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10. On Siegel Eigenforms

By Nobushige KUROKAWA
Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1981)

Introduction. We note some properties of Siegel eigenforms of
general degree relating to the algebra of Hecke operators. We refer
to [5]-[7] for motivations and examples. (These examples satisfy the
"multiplicity one conjecture".)

1. Eigencharacters. For integers n>__l and k>__0, we denote by
M([’) the vector space over the complex number field C consisting of
all Siegel modular forms of degree n and weight k. The space of cusp
orms is S(F)=Ker(" M(Fn)M(F_)), where is the Siegel
operator. As usual we understand that M(Fo)=S(Fo)=C for k>_0;
see 3 for Siegel modular forms of degree zero. For each integer n
=>1, we denote by L=L( the abstract Hecke algebra of degree n over
C as in Andrianov [1, 1.3]. For each integer k=>0, we denote by r

=r)" L-Endc (M,(F)) the representation of L on M,(1-’n) defined in
Andrianov [1, (1.3.3)]. We denote by T--T(M(F,))=r(L) the C-algebra
o all Hecke operators on M(F). We put Home (T, C) (C-algebra
homomorphisms), and for each 2 e we put M(F, 2)= {f e M(F)ITf

2(T)f for all T T} and m(2)= dime M(1-’n 2) the "multiplicity" of .
We denote by A(T) { e :1 m(2)_>_ 1} the set of all "eigencharacters" of
T. Then A(T) <_ dime M(F), where A(T) denotes the cardinality of
A(T). A ormulation of the "multiplicity one conjecture" is that re(a)

1 for all e A(T). This is equivalent to the following equality A(T)
=dime M(F,), since we have M(F)=M(F 2) and dime M(F)
a re(a) where runs over A(T). We say that a modular form f in

M(F,) is an eigen modular form (or "eigenform")i f is a non-zero
modular form belonging to M,(F ;) for a e A(T). Such a is
uniquely determined by f, and we denote it by a(f). In this case we
denote by 2(T, f) the value of 2(f) at T e T" Tf=2(T, f)f. We write
,(m, f)=,(T(m), f) ior each integer m>=l, where T(m) e T is the Hecke
operator studied by Maass [8] normalized as in Andrianov [1, (1.3.15)].

The Fourier expansion of a modular form f in M,(F,) is denoted
by f= ,r_0 a(T, f)qr with qr exp (24&-- trace (TZ)) where Z is a
variable on the Siegel upper half space of degree n and T runs over
all n n symmetric semi-integral positive semi-definite matrices. Let
R be a subring of C. We put M(In)R {f e M(F)Ia(T, f) e R or all
T _>_ O} (an R-module) and M(Fn ,) M(F ,) fq M(F) (an R-
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module) or each 2 e (T= T(M(F))). We denote by L=L() the ab-
stract Hecke algebra of degree n over R, and we put T,=T,(M([’))
--r(L) (an R-algebra). For each e we denote by 2 the restriction
of 2 on T., and we put Q(2)=Q(Image (2q))=Q(2(Tq))(an extension field
of Q) and Z(2)=Q(2)V Z (-the integral closure of Z in Q()), where Q
is the rational number field, Z is the rational integer ring, and Z is
the ring of all algebraic integers in C.

Theorem 1. Let 2 e A(T(M(F))) for n=l and even k=O. Then"
(1) Q(2) is a totally real finite extension of Q.
(2) Image (2z)cz(2) for n<=2.
Before the proof of Theorem 1, we note the following facts.
(A) M(F)z(R)zC=M(F) for n>__ 1 and even k>= 0.
(B) M(Fn) is stable under T or n>__ 1 and k>__0.
(B*) M(F)z is stable under Tz or n<=2 and

The fact (A) is proved in Eichler [3] and Baily [2]; see Igusa [4, Intro-
duction]. Here we note the iollowing easily proved fact" let R be a
subring of C, K the quotient field of R, and f= (f, ., f} a finite subset
of M(F), for n>__l and k>__0, then the following are equivalent" (1)f
is linearly independent over R, (2) f is linearly independent over K, (3)
f is linearly independent over C. The fact (B) follows rom Maass
[8, (62) (63)] and ;arkovskaja [9, (2.4)]. For n= 1, (B*) is well-known,
and for n=2, (B*) follows from Andrianov [1, (2.1.11)]. We note that
(B*) seems to hold or n>__3 also if k>=n. (Since M(F)=0 for n=2 and
kn, we do not need the condition k>=n in the above (B*) or n_<_2,
but we would need this condition in the general case containing the
case of level 1.)

Proof of Theorem 1. We denote by Aut (C) the group of all field-
automorphisms of C. Take a a e Aut (C). For each f= -]r_0 a(T, f)qr
e M(F) we put a(f)--,r_oa(a(T, f))qr. By (A), a(f) belongs to
M(F). For each 2 e r we define a(2) e r by a(2)(T)=a(,(T)) for each
T e Tq and using T= Tq(R)qC. For f e M(Fn) and T e Tq, we have a(Tf)

T(a(f)) by (B). In particular, for each f e M(F 2) with 2 e T, we
have a(f) e M,(F a(2)). Hence, if 2 e A(T), then a(2) e A(T) and a(Q(,))
=Q(a(2)). Since A(T) is a finite set, Q(2) is a finite extension of Q for
each 2 e A(T). Since Image (2q)cR for all 2 e A(T) where R is the real
number field (this fact follows from the hermiteness of Hecke opera-
tors in Tq (or T), see Andrianov [1, Theorem 1.3.4]), Q(2) is a totally
real extension of Q for each 2 e A(T). "This proves (1). To prove
(2) we take a Z-basis {hi, ..., h} of M(F)z. By (A), this is a C-
basis, of M(F). Put tt--t(h, ..., hr), and take a T e Tz. Since
TzCEndz (M(F)z) or n_<_2 by (B*), we have Th=Mh with a matrix
M e M(r, Z). Hence det (X- M) I-[ (X 2(T))() is a monic poly-
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nomial in Z[X], where X is an indeterminate and runs over A(T).
Hence 2(T)e Z. So we have (2). Q.E.D.

Theorem 2. Let 2 e 4(T(M(F))) for nl and even kO. Then"
M(F 2)z(R)z(C=M(F 2).

Proof. We ake a Z-basis {h, ..., h} of M(F,)z, which is a C-
basis of M(F) by (A). For each T e TQ, The= ,=1 (T)h with (T)
e Q by (B). For ech vector x=(x, ..., Xr) e C we put f(x)=.__ xh,.
For each e A(T) we put V()= {x e CIf(x) e M(F 2)} (a C-vector
space), then f" V(2)--.M(F 2) is. a C-linear isomorphism and dimc V(])
=m(). By (B) we have TqEndq (M(F)q), hence To is a finite di-
mensional Q-algebra. We take a Q-basis S of To, which is a finite set.
We have" x e V(2)@f(x) e M(F, 2)Tf(x)= 2(T)f(x) for all T e S
__

fl(T)x =2(T)x for ]= 1, ., r and T e S. Since the coefficients
2(T) and fl,(T) belong to Q(2), thereexists a basis {a, ..., a()} of V(2)
such that a e Q(). We take non-zero , e Z(2) such that
e Z()r. Then f(a) e M,(F 2)z() and V(2)=Ca*... Ca*(). Hence
we have Theorem 2. Q.E.D.

2. Fourier coefficients of eigenforms. For each eigen modular
form f in M(F) for n>=l and k0, we put Q(f)=Q(2(f)) nd Z(f)
--Z(2(f)). As a particular case of Theorem 2 we have the following

Theorem 3. Let f be an eigen modular form in M(F) for n=l
and even kO. Assume that m(2(f))= 1. Then there exists a non-zero
constant , e C such that ,f belongs to M(F)z(.

We refer to [5]-[7] for examples satisfying the assumption in
Theorem 3. Here we pose a problem. Let k >=0 be an integer, and let
f=(fln(1)<=nn(2)) be a system of eigen modular orms f e M(F)
stis2ying 0f=f_ or n(1)nn(2), where 0_<_n(1) n(2)c includ-
ingn (2)= c. We call such a system f as an "eigensystem" of "length"
g(f)=n(2)-n(1)-l. We denote by Q(f) the composite field of Q(f)
or all n, and put z(f)--Q(f)Z. (Possibly, Q(f)=Q(f) nd Z(f)
=Z(f) 2or each n.) Assume that (f) c, m(2(f))= 1 for all n, and
k is even. Then, by Theorem 3, there exists a non-zero constant - e C
such that fn e M(F)z() or all n. Does this hold without the above
assumptions (in particular, ior the case (f)=)? We may assume
that f is "maximal" in the following sense" (f())=0 and when n(2)
c there exists no eigen modular form g e M(F())satisfying (g)

--fn (2) 1"

3. Siegel modular forms of degree zero. For our purpose, it
is convenient to .include Siegel modular 2orms oi degree zero. The
2ollowing may be considered as definitions. For each integer k0,
M(Fo)=S(Fo)=C. The Hecke algebra L(o)=c acts on M(Fo)=C by
multiplication, T T(M(Fo)) -- C, /(T) {I}, Q(I)-- Q, and Z(I) Z,
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where I" TC is the natural isomorphism (the identity map). For
each subring R of C, M(Fo)R=S(Fo)R=R, L( =R, and TR= TR(M(Fo))
R. A modular form f e M(Fo) is eigen if and only if fev0. If f is
eigen, then 2(f) =I, Q(f) Q, z(f) z, and the L-function is L(s, f)
,,_1 2(T(m), f)m-’----- p (1 --2(T(p), f)p-s)---(s) where T(m)= 1 and

2(T(m), f)=l for each integer m>__l and p runs over all prime numbers.
Then, Theorems 1-3 hold trivially for the case of degree zero.

4. Congruences. Let) and) be eigencharacters of T(M(F))
for integers n_0 and k_>_0. Let K=Q(,(’))Q(,) be the composite field,
and (C) the integer ring of K. For an ideal c of (, we write
modc if Image (2--(), where ={o/fl[o e c, e (C), ((/), c)=(C)}K
is an O-module. For n2, this is equivalent to Image(2)--))cc by
Theorem 1(2).

In the ollowing table, we note two examples of congruences one
is Ramanujan’s congruence, and the other is Theorem I of [6].

degree 0 degree 1 degree 2

L-unetions 6911 *(12) 71] L*(38, A.0)
()congruences 2(A)--2(E) 2(Z0 )-- 2([A0])

mod 691 mod 71

Here we used the notations of [5] and [6], and we put *(s)
=(s)(2)-’F(s) for each even integer k2, we have *(k)=(--1)//.
B/2k, where B is the k-th Bernoulli number. These congruences
may suggest the higher degree cases.
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