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We study the analytic hypo-ellipticity of a system of microdif-
erential equations whose characteristic variety (in the complex
domain) has the form V V U V. here V and V are regular involutory
complex submanifolds with non-i,nvolutory intersection. We also as-
sume that the system has regular singularities along V (cf. [4]). In
particular, the system (P,P!,,, + A)u-0 satisfies the above conditions
if P and P. are scalar operators such that the Poisson bracket {a(P),
a(P)} does not vanish (where a denotes the principal symbol), A is an
m m matrix of operators of lower order, and I is the unit matrix
of degree m (see Corollary in 1).

Our result (Theorem in 1) extends a part of the results of Kashi-
wara-Kawai-Oshima [3] to more general systems. We believe that our
result is new even for single equations (see Example 2). The operator
discussed in Corollary is contained in the class discussed by Treves [8]
if a(P) is the complex conjugate of a(P). See also Gruin [1] for a
class of single partial differential equations.

1. Statement of the results. Let M be an n-dimensional real
analytic manifold and X be its complexification. We denote by C, the
sheaf on T*X of microfunctions, and by ’x the sheaf on T*X of micro-
differential operators of finite order. Let /be a system of micro-
differential equations (i.e. a coherent ’x-module) defined on an open
subset 12 of T*X--X. Suppose that the characteristic variety of /
has the form V-V (2 Vc 9. We assume the following conditions (see
[4] for notations):

(A.1) V and V are d-codimensional homogeneous regular in-
volutory submanifolds of tO, and V0-V V is non-singular.

V and V intersect normally, i.e., TV TV.--TVo for(A.2)
any p e V0.

(A.3)
(A.4)
(A.5)

dim V1- dim V2-- dim V0+ 1.
rank V=rank V=rank V0.
/has regular singularities along V.

Let P0 be a point of Vo V T*X. We can find a neighborhood
of P0 and a coherent sub-’,-module /0 of t/]o, such that ’x/0
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We set 0 /0/(-1)/0. Then we also assume
(A.6) t0 is a locally free C)v(0)-module of rank m.
The polynomial e.(, p, ?l/0) in is defined for p e V0 /2’ as in [4].

Let 2=2, ..., 2 be the roots of the equation e(, P0, /0)=0. We as-
sume, in addition, the ollowing two conditions"

(B.1) The generalized Levi iorm o V1 (cf. [6, Chapter III]) has
at least one negative eigenvalue at P0.

(B.2) 2e{0,1,2,...}or]=l,...,m.
Theorem. Under the assumptions (A.1)-(A.6) and (B.1) and (B.2),

,the system is micro-locally analytic hypo-elliptic at Po i.e., we have

(o(, 0)o=0.
Remark. The conclusion of Theorem is also valid if we replace

the conditions (B.1) and (B.2) with
(B.1)’ The generalized Levi form of V has at least one negative

.eigenvalue at P0.
(B.2)’ 2e{--1,--2,--3,..-}for]=l,..-,m.
For a homogeneous holomorphic unction f defined in a neigh-

borhood (in T’X) of Po, we denote by f the complex conjugate of f
with respect to T*X; i.e., f is the unique holomorphic function such
that ff=f holds on T*X.

Corollary. Let PI and P2 be microdifferential operators of order

.11 and 12 respectively defined in a neighborhood of Po e T*X--M. Set

.l=l+12 and let A=(Ai) be an mX m matrix of microdifferential op-
erators of order at most 1-1 defined in a neighborhood of Po. We as-
sume the following conditions"

a(P)(po) a(P)(po) 0, {a(P), a(Pe)}(P0) :/= 0,
{a(P,), a(P)c}(po)< O.

We also assume that no eigenvalue of the matrix
(at_(Aj)(po)/{a(P), a(Pe)}(po))

is a non-negative integer. Then the homomorphism

P1P2I q- A (C.)o--.(C)
is in]ective.

Now we give some examples which are contained neither in the
class discussed in [3] nor in that discussed in [8]. We set x=(xl, x0
e R and D=O/3x.

Example 1. Set
P-= (D+ V’- lxD)(D--2I- lxDOI/ A,(x)D, / Ae(x)D-+- B(x)

here A,, A., B are m m matrices of real analytic functions defined in
,an open subset U of R. Assume that no eigenvalue of the matrix
A.(0, x0 belongs to (3/- 1 ] ] e Z} for (0, x0 U. Then P is analytic
hypo-elliptic in U; i.e., if f is a column vector of m hyperfunctions
defined in an open subset U’ of U such that each component of Pf is
real analytic in U’, then each component of f is real analytic in U’.
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Example 2. Set
P-- (D1 +- lxlD2)(D1-- /- l(xl + x2)D2) +a(x)D+ a2(x)D+ b(x)

here a(x), a(x), and b(x) are real analytic unctions defined in a neigh-
borhood of 0-(0, 0) e R. Assume that a(0) e {2/- 1 ] ] e Z}. Then
P is analytic hypo-elliptic at 0; i.e., if f is a hyperfunction defined in
a neighborhood o 0 such that Pf is real analytic in a neighborhood of
0, then f is real analytic in a neighborhood of 0.

2. Sketch of the proof. Since the proo o Theorem can be
reduced to that of Corollary, we give a sketch of the proof o Corollary.
Let z-(z,...,z) be a local coordinate system o X and (z,O
--(z,..., z, ,..., ) be the corresponding local coordinate system
of T*X. We use the notation D--3/3z. Using methods of [2] and
[7], we can find a complex contact transformation defined in a neigh-
borhood of P0 such that

9({a(P1) 0))= {z 0}, 9({a(P) 0}) {1 0},
and (TX) T*X in a neighborhood of (p0) (0, dzn) here N= {h(z, )
--0} with a real valued real analytic unction h defined in a neighbor-
hood of 0 e X such that h(0)= 0, dfl(0)= dz, and that the Levi orm of
h is positive definite. By a quantized contact transformation as-
sociated with , we may assume that

-(PIP2I,+A) zlDIm B
here B is an m m matrix of microdifferential operators of order at
most 0 commuting with z and D, and the real part of each eigenvalue
of. ao(B)(O, dz)is negative. (See Theorem 1 of [4].) Then it is suf-
ficient to show that the homomorphism

zlDI--B" (((x)0 --(()x)0
is injective here -)x denotes the shea o holomorphic unctions on X
and Z {z e X h(z, )>= 0}. The injectivity of this homomorphism can
be proved by the method developed in [5].
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