8. On Conformal Diffeomorphisms between Product Riemannian Manifolds

By Yoshihiro Tashiro
Department of Mathematics, Hiroshima University
(Communicated by Kunihiko Kodaira, M. J. A., Jan. 12, 1981)

In this note, a conformal diffeomorphism means a non-homothetic conformal one. Let $M=M_{1} \times M_{2}$ and $M^{*}=M_{1}^{*} \times M_{2}^{*}$ be connected product Riemannian manifolds of dimension $n \geqq 3$, and denote the metric product structures by (M, g, F) and (M^{*}, g^{*}, G) respectively. Several geometers [1]-[3], [5]-[8] proved non-existence of global conformal diffeomorphism between complete product Riemannian manifolds with certain properties. The purpose of this note is to announce the following

Theorem. If M and M^{*} are complete product Riemannian manifolds, then there is no global conformal diffeomorphism of M onto M^{*} such that it does not commute the product structures F and $G, F G$ $\neq G F$, somewhere in M.

This is an improvement of the main theorem in a previous paper [5]. As the contraposition, a conformal diffeomorphism of M onto M^{*} has to commute the product structures F and G everywhere in M, and an example of such a conformal diffeomorphism was given in [5].

Outline of the proof. Let M_{1} and M_{2} be of dimension n_{1} and n_{2} respectively, $n_{1}+n_{2}=n$, and (x^{i}, x^{p}) a separate coordinate system of M, (x^{i}) belonging to M_{1} and $\left(x^{p}\right)$ to M_{2}. Latin indices run on

$$
i, j, k=1,2, \cdots, n_{1} ; p, q, r=n_{1}+1, \cdots, n
$$

respectively, and Greek indices $\kappa, \lambda, \mu, \nu$ on the range 1 to n. The metric tensor $g=\left(g_{\mu \lambda}\right)$ of M has pure components $g_{j i}$ and $g_{q p}$ only with respect to the separate coordinate system (x^{i}, x^{p}).

A conformal diffeomorphism f of M to M^{*} is characterized by a change of the metric tensors

$$
\begin{equation*}
g_{\mu \lambda}^{*}=\frac{1}{\rho^{2}} g_{\mu \lambda}, \tag{1}
\end{equation*}
$$

ρ being a positive-valued scalar field. The integrability of the product structure G with respect to g^{*} in M^{*} is equivalent to

$$
\begin{equation*}
\nabla_{\mu} G_{2 k}=-\frac{1}{\rho}\left(G_{\mu \lambda} \rho_{k}+G_{\mu \kappa k} \rho_{\lambda}-g_{\mu \lambda} G_{k \nu} \rho^{\nu}-g_{\mu s} G_{2 \nu} \rho^{\nu}\right) \tag{2}
\end{equation*}
$$

where ∇ indicates covariant differentiation in M and $\rho_{\lambda}=\nabla_{\lambda} \rho, \rho^{\nu}=\rho_{\lambda} g^{\lambda^{\nu}}$. Denote the gradient vector field (ρ^{2}) by Y, the parts (ρ^{i}) along to M_{1} by Y_{1} and $\left(\rho^{p}\right)$ to M_{2} by Y_{2}. Put $\Phi=|Y|^{2}=\rho_{2} \rho^{2}=\left|Y_{1}\right|^{2}+\left|Y_{2}\right|^{2}$ and

$$
\begin{aligned}
& N_{1}=\left\{P \mid Y_{1}(P)=0\right\}, \quad N_{2}=\left\{P \mid Y_{2}(P)=0\right\}, \\
& U=\left\{P \mid Y_{1}(P) \neq 0, Y_{2}(P) \neq 0\right\}, \quad V=\{P \mid F G \neq G F \text { at } P\} .
\end{aligned}
$$

Starting from the equation (2), we have the inclusion relations

$$
U \subset V \subset M-N_{1} \cap N_{2}
$$

By definition, a special concircular scalar field ρ satisfies (3)

$$
\nabla_{\mu} \rho_{\lambda}=(k \rho+b) g_{\mu \lambda},
$$

k and b being constants. The trajectories of $Y=\left(\rho^{\lambda}\right)$ are geodesics, called ρ-curves. In a neighborhood of an ordinary point P of $\rho, Y(P)$ $\neq 0$, there is an adapted coordinate system $\left(u, u^{\alpha}\right), \alpha, \beta, \gamma=2, \cdots, n$, such that u is the arc-length of ρ-curves, ρ is a function of u only, and the metric of M is given in the form

$$
d s^{2}=d u^{2}+\left\{\rho^{\prime}(u)\right\}^{2} \overline{d s^{2}},
$$

where $\overline{d s^{2}}=f_{\gamma \beta} d u^{\gamma} d u^{\beta}$ is the metric form of an ($n-1$)-dimensional Riemannian manifold \bar{M}. If M is complete and $k<0$, then M is a sphere and \bar{M} is the equatorial hypersphere of M. The equation (3) reduces to the ordinary differential equation

$$
\rho^{\prime \prime}(u)=k \rho+b
$$

along the ρ-curves, see [4].
The assumption of the theorem means $V \neq \phi$.
Case (I) of $U=\phi$. Then $M=N_{1} \cup N_{2}$, and we suppose $N_{2} \neq \phi$. In a connected component V_{0} of $V \cap N_{2}$, we have the equation

$$
\begin{equation*}
\nabla_{j} \rho_{i}=c^{2} \rho g_{j i} \tag{4}
\end{equation*}
$$

c being a positive constant, and

$$
\begin{equation*}
\Phi=\rho_{i} \rho^{i}=c^{2} \rho^{2} . \tag{5}
\end{equation*}
$$

In an adapted coordinate system in V_{0}, ρ is given by $\rho=a e^{c u}, a$ being a constant. It follows from this expression and the differentiability of ρ that $M=N_{2}$ and the equation (4) is valid on the whole manifold M.

If $U \neq \phi$, then it is proved that Φ is the sum
(6)

$$
\Phi=\rho_{\lambda} \rho^{2}=\Phi_{1}+\Phi_{2}
$$

of functions Φ_{1} of $\left(x^{i}\right)$ and Φ_{2} of $\left(x^{p}\right)$, and the parts Φ_{1} and Φ_{2} satisfy the equations

$$
\begin{equation*}
\nabla_{j} \nabla_{i}\left(\Phi_{1}-k \rho^{2}\right)=\Omega g_{j i}, \quad \nabla_{q} \nabla_{p}\left(\Phi_{2}+k \rho^{2}\right)=\Omega g_{q p}, \tag{7}
\end{equation*}
$$

where we have put

$$
\Omega=k\left(\Phi_{1}-\Phi_{2}-k \rho^{2}\right)+b,
$$

b being a constant. Moreover we have the equations

$$
\begin{align*}
& \left\{\begin{array}{l}
\nabla_{p} \nabla_{j} \nabla_{i} \rho^{2}=\nabla_{p}\left(\Phi_{2}+k \rho^{2}\right) g_{j i}, \\
\nabla_{i} \nabla_{q} \nabla_{p} \rho^{2}=\nabla_{i}\left(\Phi_{1}-k \rho^{2}\right) g_{q p},
\end{array}\right. \tag{8}\\
& \left\{\begin{array}{l}
\nabla_{k} \nabla_{j} \nabla_{i} \rho^{2}=\nabla_{k}\left(\Phi_{1}+k \rho^{2}\right) g_{j i}+g_{k j} \nabla_{i} \Phi_{1}+g_{k i} \nabla_{j} \Phi_{1}, \\
\nabla_{r} \nabla_{q} \nabla_{p} \rho^{2}=\nabla_{r}\left(\Phi_{2}-k \rho^{2}\right) g_{q p}+g_{r q} \nabla_{p} \Phi_{2}+g_{r p} \nabla_{q} \Phi_{2},
\end{array}\right. \tag{9}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
\nabla_{k} \nabla_{j} \nabla_{i} \Phi_{1}=k\left(2 g_{j i} \nabla_{k} \Phi_{1}+g_{k j} \nabla_{i} \Phi_{1}+g_{k i} \nabla_{j} \Phi_{1}\right), \tag{10}\\
\nabla_{r} \nabla_{q} \nabla_{p} \Phi_{2}=-k\left(2 g_{q p} \nabla_{r} \Phi_{2}+g_{r q} \nabla_{p} \Phi_{2}+g_{r p} \nabla_{q} \Phi_{2}\right) .
\end{array}\right.
$$

Case (II) where $k=0$ in U. The equations (8) and (9) together make the tensor equation
(11)

$$
\nabla_{\nu} \nabla_{\mu} \nabla_{\lambda} \rho^{2}=g_{\nu \mu} \nabla_{\lambda} \Phi+g_{\nu \lambda} \nabla_{\mu} \Phi+g_{\mu \lambda} \nabla_{\nu} \Phi
$$

and the equations (7) do
(12)

$$
\nabla_{\mu} \nabla_{\lambda} \Phi=b g_{\mu \lambda} .
$$

This case splits into three cases.
(a) $b=0$ and Φ is constant in U. Noting (6), we can obtain the equation

$$
\nabla_{\mu} \nabla_{\lambda} \rho^{2}=2 \Phi g_{\mu \lambda} .
$$

Referring this equation to an adapted coordinate system (u, u^{α}) for ρ^{2}, and choosing suitably the arc-length u, we obtain the expression

$$
\begin{equation*}
\rho^{2}=\Phi u^{2} . \tag{13}
\end{equation*}
$$

(b) $b=0$ and Φ is not constant. Then we have $\nabla_{\mu} \nabla_{\lambda} \Phi=0$. Integrating the equation (11) in an adapted one for Φ, we can see that this case does not occur locally.
(c) $b \neq 0$ in some connected component of U. In an adapted coordinate system (u, u^{α}) for Φ, ρ^{2} is expressed as

$$
\begin{equation*}
\rho^{2}=\frac{1}{8 b}\left[\left(b u^{2}+4 \gamma\right)^{2}+4 f^{\alpha \beta} \gamma_{\beta} \gamma_{\alpha}\right], \tag{14}
\end{equation*}
$$

where γ is a solution of the equation

$$
\begin{equation*}
\overline{\bar{V}}_{\gamma} \overline{\overline{ }}_{\beta} \bar{\nabla}_{\alpha} \gamma=-\left(2 f_{\beta \alpha} \overline{\bar{\sigma}}_{\gamma} \gamma+f_{\gamma \beta} \bar{\nabla}_{\alpha} \gamma+f_{r \alpha} \bar{\nabla}_{\beta \gamma} \gamma\right) \tag{15}
\end{equation*}
$$

in an (n-1)-dimensional manifold \bar{M} with metric tensor $f_{\beta \alpha}$.
Case (III) where $k \neq 0$ in some component U_{0} of U. By means of (7), $\Phi_{1}-k \rho^{2}$ and $\Phi_{2}+k \rho^{2}$ are special concircular scalar fields in $M_{1} \cap U_{0}$ and $M_{2} \cap U_{0}$. We may put $k=c^{2}, c>0$. Referring (7)-(9) to adapted coordinate systems (u, u^{α}) in $M_{1} \cap U_{0}$ and (v, v^{ξ}) in $M_{2} \cap U_{0}, \alpha=2, \cdots$, $n_{1}, \xi=n_{1}+2, \cdots, n$, and noting (6), we obtain the expressions of ρ^{2} in the forms

$$
\rho^{2}=\left\{\begin{array}{l}
\text { (a) } \frac{1}{c^{2}}\left(\omega_{1} e^{2 c u}-\omega_{2} \sin ^{2} c v+\frac{A}{c^{2}} e^{c u} \cos c v+B\right), \tag{16}\\
\text { (b) } \frac{1}{c^{2}}\left(\omega_{1} \cosh ^{2} c u-\omega_{2} \sin ^{2} c v+\frac{A}{c^{2}} \sinh c u \cos c v+B\right), \\
\text { (c) } \frac{1}{c^{2}}\left(\omega_{1} \sinh ^{2} c u-\omega_{2} \sin ^{2} c v+\frac{A}{c^{2}} \cosh c u \cos c v+B\right),
\end{array}\right.
$$

according to the forms of solution of (7), where A, B are constants, ω_{1} is a function of u^{α} and ω_{2} a function of v^{ξ} satisfying certain equations similar to (15).

By means of the expressions (16), we see that, in any case of the above, the sets N_{1} and N_{2} are border sets in M, the constants appearing in (16) are common with all components of U and the expressions are valid over the whole manifold M.

If M is complete, then so are the parts M_{1} and M_{2}, in particular,
M_{2} is 1-dimensional or an n_{2}-sphere, and γ in Case (I, c) and ω_{2} in Case (III) are constant or bounded.

For example, we treat Case (III, a). Let P be a point of $U, M_{1}(P)$ the part passing through P, Γ a ρ-curve of the restriction $\left(\Phi_{1}-c^{2} \rho^{2}\right) \mid$ $M_{1}(P), \Gamma^{*}=f(\Gamma)$, and s^{*} the arc-length of Γ^{*}. Then ω_{1} on Γ should be positive and we put $\omega_{1}=2 a^{2}$. We take a value u_{0} so large that $\rho>(a / c) e^{c u}$ for $u>u_{0}$, and s_{0}^{*} the value corresponding to u_{0}. Then we obtain the inequality

$$
s^{*}-s_{0}^{*}<\frac{1}{a} e^{-c u_{0}} .
$$

Hence the length of Γ^{*} is bounded as $u \rightarrow \infty$. This contradicts to the globalness of the conformal diffeomorphism $f: M \rightarrow M^{*}$.

References

[1] T. Nagano: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Japan, 11, 10-14 (1959).
[2] S. Tachibana: Some theorems on locally product Riemannian spaces. Tôhoku Math. J., 12, 281-292 (1960).
[3] N. Tanaka: Conformal connections and conformal transformations. Trans. Amer. Math. Soc., 92, 168-190 (1959).
[4] Y. Tashiro: Complete Riemannian manifolds and some vector fields. ibid., 117, 251-275 (1965).
[5] --: On conformal diffeomorphisms between complete product Riemannian manifolds. J. Math. Soc. Japan, 32, 639-663 (1980).
[6] Y. Tashiro and M. Kora: On conformal diffeomorphisms with decomposable scalar field between product Riemannian manifolds (to appear in Math. J. Okayama Univ.).
[7] Y. Tashiro and K. Miyashita: Conformal transformations in complete product Riemannian manifolds. J. Math. Soc. Japan, 19, 328-346 (1967).
\qquad : On conformal diffeomorphisms of complete Riemannian manifolds with parallel Ricci tensor. ibid., 23, 1-10 (1971).

