8. On Conformal Diffeomorphisms between Product Riemannian Manifolds

By Yoshihiro TASHIRO

Department of Mathematics, Hiroshima University

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1981)

In this note, a conformal diffeomorphism means a non-homothetic conformal one. Let $M = M_1 \times M_2$ and $M^* = M_1^* \times M_2^*$ be connected product Riemannian manifolds of dimension $n \ge 3$, and denote the metric product structures by (M, g, F) and (M^*, g^*, G) respectively. Several geometers [1]–[3], [5]–[8] proved non-existence of global conformal diffeomorphism between complete product Riemannian manifolds with certain properties. The purpose of this note is to announce the following

Theorem. If M and M^{*} are complete product Riemannian manifolds, then there is no global conformal diffeomorphism of M onto M^{*} such that it does not commute the product structures F and G, FG \neq GF, somewhere in M.

This is an improvement of the main theorem in a previous paper [5]. As the contraposition, a conformal diffeomorphism of M onto M^* has to commute the product structures F and G everywhere in M, and an example of such a conformal diffeomorphism was given in [5].

Outline of the proof. Let M_1 and M_2 be of dimension n_1 and n_2 respectively, $n_1+n_2=n$, and (x^i, x^p) a separate coordinate system of M, (x^i) belonging to M_1 and (x^p) to M_2 . Latin indices run on

i, *j*, $k=1, 2, ..., n_1$; *p*, *q*, $r=n_1+1, ..., n$ respectively, and Greek indices κ , λ , μ , ν on the range 1 to *n*. The metric tensor $g=(g_{\mu\lambda})$ of *M* has pure components g_{ji} and g_{qp} only with respect to the separate coordinate system (x^i, x^p) .

A conformal diffeomorphism f of M to M^* is characterized by a change of the metric tensors

$$(1) g^*_{\mu\lambda} = \frac{1}{\rho^2} g_{\mu\lambda},$$

 ρ being a positive-valued scalar field. The integrability of the product structure G with respect to g^* in M^* is equivalent to

(2)
$$\nabla_{\mu}G_{\lambda\kappa} = -\frac{1}{\rho} (G_{\mu\lambda}\rho_{\kappa} + G_{\mu\kappa}\rho_{\lambda} - g_{\mu\lambda}G_{\kappa\nu}\rho^{\nu} - g_{\mu\kappa}G_{\lambda\nu}\rho^{\nu}),$$

where \mathcal{V} indicates covariant differentiation in M and $\rho_{\lambda} = \mathcal{V}_{\lambda}\rho$, $\rho^{\nu} = \rho_{\lambda}g^{\lambda\nu}$. Denote the gradient vector field (ρ^{λ}) by Y, the parts (ρ^{i}) along to M_{1} by Y_{1} and (ρ^{p}) to M_{2} by Y_{2} . Put $\Phi = |Y|^{2} = \rho_{\lambda}\rho^{\lambda} = |Y_{1}|^{2} + |Y_{2}|^{2}$ and (3)

 $N_1 = \{P | Y_1(P) = 0\},$ $N_2 = \{P | Y_2(P) = 0\},$ $U = \{P | Y_1(P) \neq 0, Y_2(P) \neq 0\},$ $V = \{P | FG \neq GF \text{ at } P\}.$ Starting from the equation (2), we have the inclusion relations $U \subset V \subset M - N_1 \cap N_2$

By definition, a special concircular scalar field
$$\rho$$
 satisfies
 $\nabla_{\mu}\rho_{\lambda} = (k\rho + b)g_{\mu\lambda},$

k and b being constants. The trajectories of $Y = (\rho^{\lambda})$ are geodesics, called ρ -curves. In a neighborhood of an ordinary point P of ρ , $Y(P) \neq 0$, there is an adapted coordinate system $(u, u^{\alpha}), \alpha, \beta, \gamma = 2, \dots, n$, such that u is the arc-length of ρ -curves, ρ is a function of u only, and the metric of M is given in the form

$$ds^2 = du^2 + \{\rho'(u)\}^2 \overline{ds^2},$$

where $\overline{ds^2} = f_{\gamma\beta} dw^{\beta} dw^{\beta}$ is the metric form of an (n-1)-dimensional Riemannian manifold \overline{M} . If M is complete and k < 0, then M is a sphere and \overline{M} is the equatorial hypersphere of M. The equation (3) reduces to the ordinary differential equation

$$\rho''(u) = k\rho + b$$

along the ρ -curves, see [4].

The assumption of the theorem means $V \neq \phi$.

Case (I) of $U=\phi$. Then $M=N_1\cup N_2$, and we suppose $N_2\neq\phi$. In a connected component V_0 of $V\cap N_2$, we have the equation

$$(4) \qquad \qquad \nabla_{j} \rho_{i} = c^{2} \rho g_{ji}$$

c being a positive constant, and

$$(5) \qquad \qquad \Phi = \rho_i \rho^i = c^2 \rho^2.$$

In an adapted coordinate system in V_0 , ρ is given by $\rho = ae^{cu}$, a being a constant. It follows from this expression and the differentiability of ρ that $M = N_2$ and the equation (4) is valid on the whole manifold M.

If $U \neq \phi$, then it is proved that ϕ is the sum

(6)
$$\Psi = \rho_{\lambda} \rho^{*} = \Psi_{1} + \Psi_{2}$$

of functions Φ_{1} of (x^{i}) and Φ_{2} of (x^{p}) , and the parts Φ_{1} and Φ_{2} satisfy
the equations

(7) $\nabla_j \nabla_i (\Phi_1 - k\rho^2) = \Omega g_{ji}, \quad \nabla_q \nabla_p (\Phi_2 + k\rho^2) = \Omega g_{qp},$ where we have put

$$\Omega = k(\Phi_1 - \Phi_2 - k\rho^2) + b_2$$

b being a constant. Moreover we have the equations

(8)
$$\begin{cases} \nabla_p \nabla_j \nabla_i \rho^2 = \nabla_p (\Phi_2 + k\rho^2) g_{ji}, \\ \nabla_p \nabla_i \nabla_i \rho^2 = \nabla_p (\Phi_2 + k\rho^2) g_{ji}, \\ \nabla_i \nabla_i \nabla_i \rho^2 = \nabla_i (\Phi_2 + k\rho^2) g_{ji}, \end{cases}$$

$$(\nabla_i \nabla_q \nabla_p \rho) = \nabla_i (\Phi_1 - \kappa \rho) g_{qp},$$

$$(\nabla_r \nabla_r \nabla_r \rho) = \nabla_i (\Phi_1 + \kappa \rho) g_{qp},$$

(9)
$$\begin{cases} \nu_{k}\nu_{j}\nu_{i}\rho = \nu_{k}(\Psi_{1} + h\rho)g_{ji} + g_{kj}\nu_{i}\Psi_{1} + g_{ki}\nu_{j}\Psi_{1}, \\ \nabla_{r}\nabla_{q}\nabla_{p}\rho^{2} = \nabla_{r}(\Phi_{2} - h\rho^{2})g_{qp} + g_{rq}\nabla_{p}\Phi_{2} + g_{rp}\nabla_{q}\Phi_{2}, \end{cases}$$

and

(10)
$$\int \nabla_k \nabla_j \nabla_i \Phi_1 = k(2g_{ji}\nabla_k \Phi_1 + g_{kj}\nabla_i \Phi_1 + g_{ki}\nabla_j \Phi_1),$$

$$(10) \qquad \qquad \Big\langle \nabla_r \nabla_q \nabla_p \Phi_2 = -k(2g_{qp}\nabla_r \Phi_2 + g_{rq}\nabla_p \Phi_2 + g_{rp}\nabla_q \Phi_2).$$

Case (II) where k=0 in U. The equations (8) and (9) together make the tensor equation

 $\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2} = g_{\nu\mu}\nabla_{\lambda}\Phi + g_{\nu\lambda}\nabla_{\mu}\Phi + g_{\mu\lambda}\nabla_{\nu}\Phi$ (11)and the equations (7) do

(12)
$$\nabla_{\mu}\nabla_{\lambda}\Phi = bg_{\mu}$$

This case splits into three cases.

(a) b=0 and ϕ is constant in U. Noting (6), we can obtain the equation

$$\nabla_{\mu}\nabla_{\lambda}\rho^{2}=2\Phi g_{\mu\lambda}.$$

Referring this equation to an adapted coordinate system (u, u^{α}) for ρ^2 , and choosing suitably the arc-length u, we obtain the expression (13) $\rho^2 = \Phi u^2$.

(b) b=0 and ϕ is not constant. Then we have $\nabla_{\mu}\nabla_{\lambda}\phi=0$. Integrating the equation (11) in an adapted one for Φ , we can see that this case does not occur locally.

(c) $b \neq 0$ in some connected component of U. In an adapted coordinate system (u, u^{α}) for Φ , ρ^2 is expressed as

(14)
$$\rho^2 = \frac{1}{8b} [(bu^2 + 4\gamma)^2 + 4f^{\alpha\beta}\gamma_{\beta}\gamma_{\alpha}],$$

where γ is a solution of the equation

 $\bar{\nabla}_{\gamma}\bar{\nabla}_{\beta}\bar{\nabla}_{\alpha}\gamma = -(2f_{\beta\alpha}\bar{\nabla}_{\gamma}\gamma + f_{\gamma\beta}\bar{\nabla}_{\alpha}\gamma + f_{\gamma\alpha}\bar{\nabla}_{\beta}\gamma)$ (15)

in an (n-1)-dimensional manifold \overline{M} with metric tensor $f_{\beta\alpha}$.

Case (III) where $k \neq 0$ in some component U_0 of U. By means of (7), $\Phi_1 - k\rho^2$ and $\Phi_2 + k\rho^2$ are special concircular scalar fields in $M_1 \cap U_0$ and $M_{2} \cap U_{0}$. We may put $k = c^{2}$, c > 0. Referring (7)-(9) to adapted coordinate systems (u, u^{α}) in $M_1 \cap U_0$ and (v, v^{ϵ}) in $M_2 \cap U_0$, $\alpha = 2, \cdots$, $n_1, \xi = n_1 + 2, \dots, n$, and noting (6), we obtain the expressions of ρ^2 in the forms

(16)
$$\rho^{2} = \begin{cases} (a) & \frac{1}{c^{2}} \Big(\omega_{1} e^{2cu} - \omega_{2} \sin^{2} cv + \frac{A}{c^{2}} e^{cu} \cos cv + B \Big), \\ (b) & \frac{1}{c^{2}} \Big(\omega_{1} \cosh^{2} cu - \omega_{2} \sin^{2} cv + \frac{A}{c^{2}} \sinh cu \cos cv + B \Big), \\ (c) & \frac{1}{c^{2}} \Big(\omega_{1} \sinh^{2} cu - \omega_{2} \sin^{2} cv + \frac{A}{c^{2}} \cosh cu \cos cv + B \Big), \end{cases}$$

according to the forms of solution of (7), where A, B are constants, ω_1 is a function of u^{α} and ω_2 a function of v^{ϵ} satisfying certain equations similar to (15).

By means of the expressions (16), we see that, in any case of the above, the sets N_1 and N_2 are border sets in M, the constants appearing in (16) are common with all components of U and the expressions are valid over the whole manifold M.

If M is complete, then so are the parts M_1 and M_2 , in particular,

 M_2 is 1-dimensional or an n_2 -sphere, and γ in Case (I, c) and ω_2 in Case (III) are constant or bounded.

For example, we treat Case (III, a). Let P be a point of $U, M_1(P)$ the part passing through P, Γ a ρ -curve of the restriction $(\Phi_1 - c^2 \rho^2) |$ $M_1(P), \Gamma^* = f(\Gamma)$, and s^* the arc-length of Γ^* . Then ω_1 on Γ should be positive and we put $\omega_1 = 2a^2$. We take a value u_0 so large that $\rho > (a/c)e^{cu}$ for $u > u_0$, and s_0^* the value corresponding to u_0 . Then we obtain the inequality

$$s^*-s_0^*<\frac{1}{a}e^{-cu_0}.$$

Hence the length of Γ^* is bounded as $u \to \infty$. This contradicts to the globalness of the conformal diffeomorphism $f: M \to M^*$.

References

- T. Nagano: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Japan, 11, 10-14 (1959).
- [2] S. Tachibana: Some theorems on locally product Riemannian spaces. Tôhoku Math. J., 12, 281-292 (1960).
- [3] N. Tanaka: Conformal connections and conformal transformations. Trans. Amer. Math. Soc., 92, 168–190 (1959).
- [4] Y. Tashiro: Complete Riemannian manifolds and some vector fields. ibid., 117, 251-275 (1965).
- [5] ——: On conformal diffeomorphisms between complete product Riemannian manifolds. J. Math. Soc. Japan, 32, 639-663 (1980).
- [6] Y. Tashiro and M. Kora: On conformal diffeomorphisms with decomposable scalar field between product Riemannian manifolds (to appear in Math. J. Okayama Univ.).
- [7] Y. Tashiro and K. Miyashita: Conformal transformations in complete product Riemannian manifolds. J. Math. Soc. Japan, 19, 328-346 (1967).
- [8] —: On conformal diffeomorphisms of complete Riemannian manifolds with parallel Ricci tensor. ibid., 23, 1-10 (1971).