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On Richardson Classes of Unipotent Elements
in Semisimple Algebraic Groups

By Takeshi HIRAI
Department of Mathematics Kyoto University

(Communicated by Shokichi IYANAGA, M. . A., Sept. 12, 1981)

Let G be a connected semisimple algebraic group over an algebrai-
cally closed field K of characteristic zero. Let P be a parabolic sub-
group of G and U its unipotent radical. A unipotent class in G is
called a Richardson class corresponding to P if it intersects U densely
[6]. We study here the correspondence between Richardson classes
and parabolic subgroups in detail. Note here that, as is shown in
[3], we naturally encounter the notion of Richardson classes or
more generally that of induced classes, in the study of Fourier trans-
form of unipotent orbital integrals on a connected semisimple Lie
group.

1. Let be the Lie lgebr of G, a Carton subalgebr of
the root system of (, ), / the set of all positive roots in
the set of all simple roots. For a subset F of//, we define a standard
parabolic subgroup P(F) of G as follows. Put F={Xe h; y(X)=0
(- e F)}, and L(F)= {g e G Ad(g)X=X (X e F+/-)}. Further let (F} be
the set of all roots in expressed as integral linear combinations of, e F, U the one-dimensional unipotent subgroup corresponding to
e X, and U(F) the subgroup generated by U’s for a e /-(F}. Then
P(F)=L(F)U(F) is a parabolic subgroup of G with a Levi subgroup
L(F) and the unipotent radical U(F). Note that (F} is the root system
of L(F) and /--(F} is the ideal I(II-F) of 27 generated by II--F in
the sense of [7, 2].

For F, F’II, we define "FF’ in " if the Richardson classes
corresponding to P(F) and P(F’) coincide with each other. Remark
that F-F’ here is equivalent to I(II-F)- I(II--F’) in [7, 2].

Rewriting Theorem 1.7 in [5], we have the following.
Theorem 1 [5]. Let W be the Weyl group of the root system

and let F, F’cII. If wF F’ for some w e W, then
We also have the following general theorem.
Theorem 2. Let II, II2 be two subsets of II orthogonal to each

other, and let Fi, 1" be two subsets of II, for i---1, 2. Assume that
FF in the root system (II} for i: 1, 2. Then F:F JF.F’:F’

F’ in X (II}. Here H= may be admitted.
2. We call a subsystem of the relationsFF’ in various (H, 27)
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fundamental i it generates under the properties o in Theorems 1
and 2 the whole relation . We list up here a system o undamental
relations. The simple roots a’s in each type o irreducible root sys-
tems are numbered as ollows.

_tvneB
1 2 3 n--1 n

type C o---o---<>
1 2 3 n--1 n

type D 1 2 3 n--2"(C)n

type E
1 2 3 4 518 6 7

type G
1 2

type F
1 2 3 4

type E
1 2 4 5

We denote simply by Z a root system of type Z.
(1) In Bn or C with n=3k-1, kl, (H--{_})(H--{}).
(2) In D, {a,, a} {a, a, a}.
(3) In D with n=3k+l, k2, (H-{})(H--{+}).
(a) n E, (-{})-(-{, }).
(5) In E,, (H {a}) (H {a,

(7) n G, {} {}.
Let a be the unique non-trivial automorphism of the Dynkin diagram
o D or o E.

(8) In D+ (k2) or in E, aFF or any FcH.
One o our main results is the ollowing.
Theorem . Under the properties of the relation in Theorems

1 and 2, the system of relations (1)-(8) is fundamental.
To get a smaller system consisting o mutually independent rela-

tions, (8)is replaced by (8’) below. Further the set of relations in
Theorem 1 can be replaced by (9) below. That is,

Theorem 4. The system of relations (1)-(7), (8’) and (9) generates
the whole relatiunder the property ofin Theorem 2.

(8’) In D+l(k2), (H--{a})(H--{a+}). In E, (H--{al})
-(-{}), (-{})-(-{}).

(9) In A, i wF=F’ or F, F’H with some w e W, the Weyl
group o A, then F. Let us now determine the Richardson class corresponding to

P(F) by means o F. To do so, we turntog instead of G for con-
venience of statement. Ater Hotta-Springer [4, p. 119], we call a
nilpotent element X e of parabolic type with respect to P(F) if its
class G(X)={Ad(g)X; g eG} intersects u(F) densely, where u(F)
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denotes the sum ot the root subspaces . over a e X/-(F}. For
classical types B, Cn, and D, it is convenient to use as a parameter
or the class G(X) the Jordan normal orm o X under conjugations
o. GL(N, K) with N=2n+ 1, 2n or 2n respectively. For exceptional
types, the (weighted) Dynkin diagram o X [8, p. 243] is used as a
parameter.

Classical types. Let X be conjugate under GL(N, K) to J(Pl)
J(P2)’. "J(Ps), PlP2’" P,, PI+P2/" ./ps=N, where J(p)is

the p p Jordan matrix with entries 1 just bove the diagonal and zero
except there (c. [3, 2]). Then we say that X is of Jordan type (p,
p,..., p). Note that in D with n even, i all p are even, exactly
two classes have the same Jordan type (p, p.,-.., p), and that the
Dynkin diagram o X is obtained rom (p, p., ..., p) as in [8, pp. 263-
264].

One knows that 2or B or D,
(BD1) the multiplicity of any even integer in p’s is even.

Theorem . A nilpotent element X in B or D of Jordan type
(p, p, ..., p)is of parabolic type if and only if it satisfies the con-
dition (BD2) below.

(BD2) Let p be even and p are all odd for ]t. Then, for p
with ]> t, (i) the multiplicity of any odd integer in p’s is at most two,
and (ii) if p, p/, ..., p_ are all odd and of multiplicity 1, and i=1
(resp. ]--l=s)or p_ (resp. p) is even or multiplicity 2, then i--] is
even.

The condition (BD2) can not be expressed in a simple manner by
means o the Dynkin diagram. The analogous result or type Cn was
given in [3, 5]. These are essentially contained in [2].

Let X be o parabolic type with respect to P(F). Then, we can
determine the Jordan type of X by means o F similarly as or type Cn
in [3, 5]. This is nothing but the Spaltenstein mapping in [2, p. 2.25].
Note that, or D with n even, an additional discussion is necessary
when all p are even.

Exceptional types. A nilpotent element X e fi is called even i the
weights in its Dynkin diagram are all 0 or 2. Every even nilpotent
element is of parabolic type and the corresponding F is Fx= (a e//;
the weight o X or a is zero}, or FFz. We give a complete list o
non-even nilpotent classes o parabolic type and one o the correspond-
ing subsets Fc//or each class. We list up together with the Dynkin
diagram o X the type o a minimal regular subalgebra containing X
(cf. [1, pp. 176-185]), which is used in [7, Tables 1-3, pp. 446-449] as
a name o the class G(X).
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type F
type E o o o 1

0
01010

0
10001

2
11011

1
11011

2
type E 1 0 0 0 1 0

1
010101

0
010102

0
011012

1
201012

1
type E8 0 0 1 o 0 1 o

0
0010101

0
2100010

1
1010101

0
201o101

0
2010102

0
2201012

1

Dynkin diagram
1012

4. Sketch of the proof.

Name o2 class Corresponding F

2A1

A+2A H--{}

A ll--{a, o}

A/A H-- {a, 4}

D(a) {, ,
D(a)+A H--[e, }

A+A H--{a, }

D(a) {a, , a, }

D+A {a, , a, }

D(a) {a, ,
A,+A+A

D(a) H--{a, a,

D(a) H--{a,

E(a)+A H--{a, ,
D+A {, , , }
E(a) {, ,

(1 ) The property (8) in 2 follows
from the invariance of the Dynkin diagram of any nilpotent element
under a (see [8, p. 264] for Dfn/,, and [2, Table 18, p. 178] for E6).

(2) For classical types we first prove the results in 3 in a simi-
lar way as in [3, 5]. (Note that the uniqueness of maximal elements
modulo conjugacy in Lemma 5.5 in [3] follows from that of the class
which intersects u(F) densely.) We can also get this result from that
in [2]. Now, Theorem 4 for this case is proved by the process itself
of determining explicitly the Jordan type of X of parabolic type with
respect to P(F) by means of F.

(3 ) For exceptional types, we discuss type by type inductively
according to the ranks of root systems. We first classify the subsets
/’ of//under (1)-(3), (8’), (9) and Theorem 2. Then for every repre-
sentative F, we determine the diagram of an X corresponding to P(F),
using the following.

(i) The dimension of G(X) is equal to 2 dim u(F)by Theorem
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1.3(a) in [6]. The dimension o any class is given by the Dynkin dia-
gram o its elements as dim -dim fi(0)-dim (1), where fi(]) is the
space spanned by g’s or roots a with weight ] [8, p. 241].

(ii) Whe there exist some aumber (2 or 3) o classes of dimea-
sion 2 dim u(F), we find by clcultions, or one o2 them C, its repre-
sentative X e (2) of the form X=XX with X e g, :/:0, and
cX(g(2)) consisting of linearly independent roots (cf. [8, p. 246]), and a
w e W such that wgcX(u(F)) for an appropriately chosen representa-
rive F under the above classification. Here for a subspace a of g, we
put 2()={a e 2; gca}. This proves that C is just the class corre-
sponding to P(F).

The validity of Theorem 4 for this case can be seen now.

Remark. More elementarily, we need not use Theorem 1.3(a) in
[6]. In fact, even when there exists only one class of dimension
2 dim u(F), we can proceed as in (ii), and then dim G(X)= 2 dim u(F) is
obtained as its consequence.

We shall give two examples to explain the situation in (ii) more in
detail.

Example 1. Type Es. Take F=H--{o5, aT} in the list in 3. To
prove that the Richardson class corresponding to P(F) is the class with

Dynkin diagram0and named D(a,) in [7, p. 448], we proceed as

follows. (Other classes of the same dimension, 216, are with diagram
2100012 and named D and with 22200002 named E.) Let F’= H--{a, a},1
then F’.-F in 2: by (3) or D. We can find a 2:((2)) 2:((F’))
such that X=XeX is a nilpotent element o type D+A and that
d(X)(0)-(2) (c. [1, Tble 20, p. 184]). The is given below, where
a root is expressed by its coefficients with respect to simple roots.

0000111, 0011100, 0001111, 0001210, 0011110, 0111110, 0111100, 1111000.
0 0 1 1 1 0 1 0

Example 2. Type Es. The most complicated was to establish the
relation (5) in 2. Put F=H--[}, F’=H-{, }, nd let C and C’
be the Richardson classes corresponding to P(F) and P(F’) respectively.
Then they have the same dimension 208, and the class C is even, with

Dynkin diagram 000200 and named 2A. There is another unipotent

class of the same dimension, with Dynkin diagram 2101001 and nmed0

D/A.
To prove C’ C, first we study X((2)) for C. It cotains five kinds

of subset such that X=XeX satisfies ad(X)(0)=(2), and that the
minimal regular subalgebra containing X is of type 2A, A/A/A,
D(a)+D, D(a)/ A, or D(a)+2A. (Here "of type D(a)/D" means
that it is of type D+D as algebra and contains X as its semiregular
element of type D(a)/D.) We give examples of one for each type.
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Let fl (14i6), (1]<5), and (1k5) be positive roots given
as ollows

0001000, 0011100, 0001210, 0011110, 0111110,
0 0 1 1 0

1111100, 1111111, 0011221, 0111100, 0001211;
1 0 1 1 1

0001221, 0111211, 1111111, 0011111, 1111211.
1 1 1 0 1

Then , one for each type is given as

2A4 1, 2, f13, fls, f16, ’1, ’., ’3
A+A+A fl, fl, fl, fl, fl, fl, ’, %

D(al)+A ill, fl, fl, fl, fl, 31, 3, (

0111111;
1

(To prove ad(X)g(0)=fi(2) for type D(a)+A, we use Mizuno’s result
on sgn(N.) [7, Table 12, p. 460] in case of type E.)

On the other hand, we proved that there is no subset ’ of X(u(F’))
which is of type 2A. However we can find many ’ of type A+A
+A, one of which is given below:

0000000, 0000110, 0001111, 0011211, 0112210, 0122221, 1122210, 1222211.
1 0 0 1 1 1 1 1

This r, is automatically conjugate under W to the of type A
/ A.+A above.

The author expresses his hearty thanks to Profs. R. Hotta and
N. Kawanaka for their valuable comments.
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