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86. On Richardson Classes of Unipotent Elements
in Semisimple Algebraic Groups

By Takeshi HIRAI
Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

Let G be a connected semisimple algebraic group over an algebrai-
cally closed field K of characteristic zero. Let P be a parabolic sub-
group of G and U, its unipotent radical. A unipotent class in G is
called a Richardson class corresponding to P if it intersects U, densely
[6]. We study here the correspondence between Richardson classes
and parabolic subgroups in detail. Note here that, as is shown in
[8], we naturally encounter the notion of Richardson classes or
more generally that of induced classes, in the study of Fourier trans-
form of unipotent orbital integrals on a connected semisimple Lie
group.

§ 1. Let g be the Lie algebra of G, §j a Cartan subalgebra of g, ¥
the root system of (g, §), 2+ the set of all positive roots in 5, and I7
the set of all simple roots. For a subset I" of I7, we define a standard
parabolic subgroup P(I") of G as follows. Put I''={Xech; r(X)=0
(el and LIN={ge G; Ad(g)X=X (X eI'Y)}. Further let <I") be
the set of all roots in X expressed as integral linear combinations of
rel, U, the one-dimensional unipotent subgroup corresponding to «
e Y, and U(I") the subgroup generated by U,’s for ¢ € 3*—{I">. Then
P(IN=L(I"U(I") is a parabolic subgroup of G with a Levi subgroup
L(I") and the unipotent radical U(I"). Note that (/") is the root system
of L(I') and 3+ —{I") is the ideal I(/I —I") of 3+ generated by I/ —1I" in
the sense of [7, § 2].

For I, IV II, we define “I"'~I" in 3’ if the Richardson classes
corresponding to P(I") and P(I"") coincide with each other. Remark
that I'~1I" here is equivalent to I(/I—-I")~I(II -I") in [7, § 2].

Rewriting Theorem 1.7 in [5], we have the following.

Theorem 1 [5]. Let W be the Weyl group of the root system 2,
andlet I'y I"CIlI. If wl'=I" for some we W, then I' ~1".

We also have the following general theorem.

Theorem 2. Let I1,, II, be two subsets of II orthogonal to each
other, and let I',, I'; be two subsets of II, for i=1, 2. Assume that
I';~T" in the root system {II,y for i=1,2. Then I'=I''U[,~I"=1I7
Ul'yin ¥={I)y. Here Il,=¢ may be admitted.

§2. We call a subsystem of the relations I" ~I" in various (I7, X)
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fundamental if it generates under the properties of ~ in Theorems 1
and 2 the whole relation ~. We list up here a system of fundamental
relations. The simple roots «,’s in each type of irreducible root sys-
tems are numbered as follows.

O‘—()_O_"’_{):() ():;>()
type B, 1 2 3 n—1 = type G, 1 2
O—O0—0— +++ —O==0 O—0O==0—0
type C, 1 2 3 n—1 n type F, 1 2 3 4
-1
type D. O—O——O +-- " o0—0
ypeln 7775 3 ;Lo—z<gn typeE"1 2 3 4 5

6

type £, 0—0—0— —Q o—

yp“1234567typeE’123456
8 7

We denote simply by Z a root system of type Z.

(1) InB,or C,withn=3k—1, k=1, (Il —{ay_.}) ~ U] —{ay})-

2) In D, {a, a}~{a;, a5, ).

3 InD, with n=3k+1, k=2, (Il —{ay}) ~ U] —{ay..}).

@ InE, (I—{a)~UT—{a, ).

) In B, (1—{a) ~ U —{a, a)).

©6) InF, {a,a,a}~{a, a0} ~{ay, o}

(M In G, {a)~{a).

Let o be the unique non-trivial automorphism of the Dynkin diagram
of D,,,, or of E.,.

@® InD,,,, (k=>2)orinFKE, ¢I'~I for any I"'CII.

One of our main results is the following.

Theorem 3. Under the properties of the relation ~ in Theorems
1 and 2, the system of relations (1)-(8) is fundamental.

To get a smaller system consisting of mutually independent rela-
tions, (8) is replaced by (8) below. Further the set of relations in
Theorem 1 can be replaced by (9) below. That is,

Theorem 4. The system of relations (1)—(7), (8) and (9) generates
the whole relation ~under the property of ~in Theorem 2.

(8) In Dy, (k>2), (H"‘{an})"'(ﬂ_{azkn})- In E, (H—{al})

-~ —{as))y T —{e}) ~U] —{a,}).

9 InA,, if wI'=I" for I', I"C Il with some w e W, the Weyl

group of A,, then I"'~1".

§ 3. Let us now determine the Richardson class corresponding to
P(I") by means of I'. To do so, we turn to g instead of G for con-
venience of statement. After Hotta-Springer [4, p. 119], we call a
nilpotent element X € g of parabolic type with respect to P(I") if its
class G(X)={Ad(9)X; ge G} intersects u(l") densely, where u(l")
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denotes the sum of the root subspaces g, over aeX*—(I">. For
classical types B,, C,, and D,, it is convenient to use as a parameter
for the class G(X) the Jordan normal form of X under conjugations
of GL(N, K) with N=2n-+1, 2n or 2n respectively. For exceptional
types, the (weighted) Dynkin diagram of X [8, p. 243] is used as a
parameter.

Classical types. Let X be conjugate under GL(N, K) to J(p,)
DI (@)D - - DI(D,), P;=D, > - - =Py Di+Do+ - - -+, =N, where J(p) is
the p X p Jordan matrix with entries 1 just above the diagonal and zero
except there (cf. [3, §2]). Then we say that X is of Jordan type (p,,
Dy -+ -, D,). Note that in D, with n even, if all p, are even, exactly
two classes have the same Jordan type (p,, D,, - -+, D,), and that the
Dynkin diagram of X is obtained from (p,, p,, - - -, »,) a8 in [8, pp. 263-
2641].

One knows that for B, or D,

(BD1) the multiplicity of any even integer in p,’s is even.

Theorem 5. A nilpotent element X in B, or D, of Jordan type
Py, Dy - - -, D) 18 Of parabolic type if and only if it satisfies the con-
dition (BD2) below.

(BD2) Let p, be even and p, are all odd for j<t. Then, for p,
with 7>=t, (i) the multiplicity of any odd integer in p.’s is at most two,
and (i) of Dy Vi - -+, Py-1 are all odd and of multiplicity 1, and i=1
(resp. j—1=s) or p,_, (resp. p,) is even or multiplicity 2, then i—j is
even.

The condition (BD2) can not be expressed in a simple manner by
means of the Dynkin diagram. The analogous result for type C, was
given in [3, § 5]. These are essentially contained in [2].

Let X be of parabolic type with respect to P(I"). Then, we can
determine the Jordan type of X by means of I" similarly as for type C,
in[3, §5]. This is nothing but the Spaltenstein mapping in [2, p. 225].
Note that, for D, with » even, an additional discussion is necessary
when all p; are even.

Exceptional types. A nilpotent element X ¢ g is called even if the
weights in its Dynkin diagram are all 0 or 2. Every even nilpotent
element is of parabolic type and the corresponding [I" is ['y={we ll;
the weight of X for « is zero}, or I'~I"y,. We give a complete list of
non-even nilpotent classes of parabolic type and one of the correspond-
ing subsets I'C II for each class. We list up together with the Dynkin
diagram of X the type of a minimal regular subalgebra containing X
(cf. [1, pp. 176-185]), which is used in [7, Tables 1-3, pp. 446-449] as
a name of the class G(X).
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Dynkin diagram  Name of class Corresponding I”

type F, 1012 C, {ayy ay}

type E, 10001 24, T —{a}
01 8 10 A,+24, 7T —{a,}
10(2)01 A, I —{a;, a}
11011 A+ A, 0 —{a,, a,}
11011 Dya,) {as, @y i}

type E, 100 (1) 10 D(a)+ A, T —{at, a;}
010(1)01 A+ A, I —{os, o}
010102 Dy(a,) {as @z s, a0}
011 (1) 12 D, + A, {ay, @y ayy s}
201 (1) 12 D(a,) {ory, atzy o}

type E, 0010 8 10 A+ A+ A, II —{ers}
0010101 A+ A, I —{as}
2100010 Dya,) IT—{at, atyy g}
1010101 D(a,) I —{as, i}
2010101 E(a)+A, IT—{ats, atr,y atg}
2010 % 02 D+ A, {ats, atyy gy )}
2201 g 12 Efa,) {ory, gy a5}

§4. Sketch of the proof. (1°) The property (8) in §2 follows
from the invariance of the Dynkin diagram of any nilpotent element
under ¢ (see [8, p. 264] for D,,.,, and [2, Table 18, p. 178] for E,).

(2°) For classical types we first prove the results in § 3 in a simi-
lar way as in [3, § 5]. (Note that the uniqueness of maximal elements
modulo conjugacy in Lemma 5.5 in [3] follows from that of the class
which intersects u(I") densely.) We can also get this result from that
in [2]. Now, Theorem 4 for this case is proved by the process itself
of determining explicitly the Jordan type of X of parabolic type with
respect to P(I") by means of [.

(8°) For exceptional types, we discuss type by type inductively
according to the ranks of root systems. We first classify the subsets
I of IT under (1)—(3), (8), (9) and Theorem 2. Then for every repre-
sentative I', we determine the diagram of an X corresponding to P(I"),
using the following.

(i) The dimension of G(X) is equal to 2 dim u(/") by Theorem
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1.3(a) in [6]. The dimension of any class is given by the Dynkin dia-
gram of its elements as dim g—dim g(0)—dim g(1), where g(j) is the
space spanned by g.’s for roots « with weight 7 [8, p. 241].

(i1) When there exist some number (2 or 3) of classes of dimen-
sion 2 dim u(I"), we find by calculations, for one of them C, its repre-
sentative X ¢ g(2) of the form X=2,.,X, with X,eg,, #0, and ¥
< 2(g(2)) consisting of linearly independent roots (cf. [8, p. 246]), and a
w € W such that w¥ c3w(I") for an appropriately chosen representa-
tive I" under the above classification. Here for a subspace a of g, we
put Y(a)={we X ; g,Ca}. This proves that C is just the class corre-
sponding to P(I").

The validity of Theorem 4 for this case can be seen now.

Remark. More elementarily, we need not use Theorem 1.3(a) in
[6]. In fact, even when there exists only one class of dimension
2 dim u(I"), we can proceed as in (ii), and then dim G(X)=2 dim u(I") is
obtained as its consequence.

We shall give two examples to explain the situation in (ii) more in
detail.

Example 1. Type E,. Take I'=II —{a;, o} in the list in§3. To
prove that the Richardson class corresponding to P(I”) is the class with
Dynkin diagram 1010(1)01 and named D.(a,) in [7, p. 448], we proceed as
follows. (Other classes of the same dimension, 216, are with diagram
2100212 and named D,, and with 2220802 named E,.) Let I"=II—{«a,, a},
then I ~I in X by (8) for D,. We can find a 3 (g(2)NZwl™))
such that X=2%,.,X, is a nilpotent element of type D;+ A, and that
ad(X)g(0)=g(2) (cf. [1, Table 20, p. 184]). The ¥ is given below, where
a root is expressed by its coefficients with respect to simple roots.

0000%11, 0011(1)00, 0001111, 0001%10, 0011}10, 0111(1)10, 0111}00, 1111800.

Example 2. Type E,. The most complicated was to establish the
relation (5) in § 2. Put I'=IT—{a}, I"=1II —{a,, a5}, and let C and C’
be the Richardson classes corresponding to P(I") and P(I") respectively.
Then they have the same dimension 208, and the class C is even, with
Dynkin diagram 0002800 and named 2A4,. There is another unipotent

class of the same dimension, with Dynkin diagram 2101801 and named
D+ A,.

To prove C'=C, first we study X(g(2)) for C. It contains five kinds
of subset ¥ such that X=2_.,X, satisfies ad(X)g(0)=g(2), and that the
minimal regular subalgebra containing X is of type 24,, A;+A,+ A,
D,(a,)+D,, D(a,)+ A,, or Dy(a,)+2A,. (Here “of type D,(a)+D,” means
that it is of type D,+ D, as algebra and contains X as its semiregular
element of type D,(a,)+D,.) We give examples of ¥ one for each type.
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Let g, (1<9<6), 7r; (1<7<5), and §, (1<k<5) be positive roots given
as follows:
0001000, 0011100, 0001210, 0011110, 0111110, 0111111;
0 0 1 1 0 1

1111100, 1111111, 0011221, 0111%00 , 0001%11 5
1 0 1

0001221, 0111211, 1111111, 0011111, 1111211.
1 1 1 0 1

Then ¥, one for each type is given as

24, . .81’ /32, ,Bs’ ,35’ ,Bcs Tis Yoo T35

A5+ Az+ sz .81’ ;32’ 133» .Bu ;85, .Be, T T2

Ds(az)“‘ZAx : ,31, ,Bzy }93’ }94’ .85’ Tas Tas 75

Dﬁ(a1)+AS : ‘Bl, ‘82, 188’ ﬁ” ﬁ5’ 51’ 52’ 53;

Dfap+D, : Bis Bas Bss Bus Bss Bos 04 Os.

(To prove ad(X)g(0)=g(2) for type Dy(a,)+ 4;, we use Mizuno’s result
on sgn(N,,) [7, Table 12, p. 460] in case of type E.)

On the other hand, we proved that there is no subset ¥” of 2 (u(/™))
which is of type 24,. However we can find many ¥’ of type 4;+ A,
+ A,, one of which is given below :

0000200, 0000(1)10, 0001(1)11, 0011%11, 0112%10, 0122%21, 1122%10, 1222%11.

This ¥ is automatically conjugate under W to the ¥ of type A;
+ A,+ A, above.

The author expresses his hearty thanks to Profs. R. Hotta and
N. Kawanaka for their valuable comments.
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