85. Class Number Calculation and Elliptic Unit. III

Sextic Case

By Ken Nakamula
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1981)

In our preceding notes [2] and [3], we have introduced an effective method to calculate the class number of a certain cubic or quartic field utilizing its elliptic unit. In the following, we shall treat the same problem for a sextic field.

Let K be a real sextic number field which is not totally real and which contains a (real) quadratic subfield K_{2} and a cubic subfield K_{3}. Let $D(>0), h$ and E_{+}respectively be the discriminant, the class number and the group of positive units of K. Further, let h_{2} and h_{3} be the class numbers of K_{2} and K_{3} respectively. We shall give a way to compute $h / h_{2} h_{3}$ and E_{+}at a time by using the "elliptic unit" of K.
§ 1. Illustration of algorithm. Let η_{2} and η_{3} be the fundamental units (>1) of K_{2} and K_{3} respectively, and let H_{+}be the group of positive units of K, i.e.

$$
H_{+}:=\left\{\varepsilon \in E_{+} \mid N_{K / K_{2}}(\varepsilon)=N_{K / K_{3}}(\varepsilon)=1\right\} .
$$

Then, as in [1], there is the relative fundamental unit $\varepsilon_{1}(>1)$ in H_{+}, i.e. $H_{+}=\left\langle\varepsilon_{1}\right\rangle$, and ε_{1} generates E_{+}together with two other independent units. More precisely,

$$
E_{+}=\left\langle\varepsilon_{1}\right\rangle \times\left\langle\varepsilon_{2}\right\rangle \times\left\langle\varepsilon_{3}\right\rangle
$$

with
(2)

$$
\begin{equation*}
\varepsilon_{2}=\sqrt[3]{\eta_{2}}, \quad \sqrt[3]{\eta_{2}{ }^{ \pm 1} \varepsilon_{1}} \quad \text { or } \eta_{2} \tag{1}
\end{equation*}
$$

Let η be the elliptic unit of K, of which the definition will be given in § 5. Then, applying the results in Schertz [5], we see that $\eta>1$ and $\eta \in H_{+}$, and obtain the following formula:

$$
\begin{equation*}
h / h_{2} h_{3}=\left(E_{+}:\left\langle\varepsilon_{1}, \eta_{2}, \eta_{3}\right\rangle\right)\left(H_{+}:\langle\eta\rangle\right) / 6 . \tag{3}
\end{equation*}
$$

Therefore, the calculation of $h / h_{2} h_{3}$ is reduced to the determination of the group index ($H_{+}:\langle\eta\rangle$) and that of the units $\varepsilon_{2}, \varepsilon_{3}$. The index ($H_{+}:\langle\eta\rangle$) is determined similarly as in [2] or [3] by using Theorems 1 and 2 below. The computation of ε_{2} and ε_{3} is explained in $\S 4$.
§ 2. Upper bound of $h / h_{2} h_{3}$. The following lemma gives an upper bound of the index of a subgroup of H_{+}.

Lemma 1. Let $1<\varepsilon \in H_{+}$and $D(\varepsilon)$ be the discriminant of ε. Then

$$
(0<) D(\varepsilon)<16\left(\left(\varepsilon+\frac{9}{7}\right)^{7}-290\right)^{2}
$$

It is easily seen that $D>144^{2}$, hence we have
Theorem 1. Let $1<\varepsilon \in H_{+}$, then

$$
\left(H_{+}:\langle\varepsilon\rangle\right)<\log (\varepsilon) / \log \left(\sqrt[7]{(\sqrt{ } D / 4)+290}-\frac{9}{7}\right) .
$$

This theorem assures that our algorithm ends in a finite number of steps. Especially, we obtain an explicit upper bound of $h / h_{2} h_{3}$ on account of (1), (2) and (3).

Corollary. Let η be the elliptic unit of K, then

$$
h / h_{2} h_{3}<\log (\eta) / \log \left(\sqrt[7]{(\sqrt{D / 4})+290}-\frac{9}{7}\right) .
$$

§3. n-th root of relative unit. For any element ξ of K such that $K=\boldsymbol{Q}(\xi)$, let

$$
X^{6}-s(\xi) X^{5}+t(\xi) X^{4}-u(\xi) X^{3}+v(\xi) X^{2}-w(\xi) X+x(\xi)
$$

be the minimal polynomial of ξ over \boldsymbol{Q}.
Let $1 \neq \varepsilon \in H_{+}$, then $K=\boldsymbol{Q}(\varepsilon)$ and we have

$$
u(\varepsilon)=s(\varepsilon)^{2}+2(s(\varepsilon)-t(\varepsilon)+1), \quad v(\varepsilon)=t(\varepsilon), \quad w(\varepsilon)=s(\varepsilon), \quad x(\varepsilon)=1 .
$$

The following lemma enables us to compute the minimal polynomial of ε from its approximate value.

Lemma 2. Notations being as above, let $\beta=\varepsilon+\varepsilon^{-1}$. Then $s(\varepsilon)$ is a rational integer such that $|s(\varepsilon)-\beta|<2 \sqrt{ } \overline{\beta+2}$ and that $\left(s(\varepsilon)^{2}+\beta^{2} s(\varepsilon)\right.$ $\left.-\beta^{3}+3 \beta+2\right) /(\beta+2) \in \boldsymbol{Z}$, and $t(\varepsilon)$ is given by $t(\varepsilon)=\left(s(\varepsilon)^{2}+\beta^{2} s(\varepsilon)-\beta^{3}+3 \beta\right.$ $+2) /(\beta+2)$.

For any rational integers s and t, put $u=s^{2}+2(s-t+2)$ and define a recursive sequence $r_{n}=r_{n}(s, t)(n=1,2, \ldots)$ as follows:

$$
\begin{aligned}
& r_{1}=s, \quad r_{2}=s r_{1}-2 t, \quad r_{3}=s r_{2}-t r_{1}+3 u, \quad r_{4}=s r_{3}-t r_{2}+u r_{1}-4 t, \\
& r_{5}=s r_{4}-t r_{3}+u r_{2}-t r_{1}+5 s, \quad r_{6}=s r_{5}-t r_{4}+u r_{3}-t r_{2}+s r_{1}-6, \\
& r_{n}=s r_{n-1}-t r_{n-2}+u r_{n-3}-t r_{n-4}+s r_{n-5}-r_{n-6} \quad \text { if } n \geqq 7 .
\end{aligned}
$$

Then we have
Theorem 2. Let $1 \neq \xi \in H_{+}$and $n \in N, \quad$ Put $\varepsilon=\sqrt[n]{\xi}(>0)$ and $\beta=\varepsilon$ $+\varepsilon^{-1}$. The real number ε belongs to K if and only if there exists a rational integer s such that

$$
|s-\beta|<2 \sqrt{\beta+2}, \quad r_{n}(s, t)=s(\xi), \quad r_{n}\left(s_{0}, t_{0}\right)=t(\xi) .
$$

Here t is the nearest rational integer to $\left(s^{2}+\beta^{2} s-\beta^{3}+3 \beta+2\right) /(\beta+2)$,

$$
s_{0}=t-s-3, \quad t_{0}=r_{3}(s, t)+t_{0}-3
$$

If s satisfies the above condition, then

$$
s(\varepsilon)=s \quad \text { and } \quad t(\varepsilon)=t .
$$

This theorem gives us an effective method to judge whether the n-th root of ξ is also an element of H_{+}or not. It only requires $s(\xi)$, $t(\xi)$ and an approximate value of ξ.
$\S 4$. Determination of ε_{2} and ε_{3}. The fundamental unit η_{2} of K_{2}
is obtained explicitly as usual. The fundamental unit η_{3} of K_{3} is calculated by the method as in [2]. So we may assume that the minimal polynomials and approximate values of η_{2} and η_{3} are known. Then, after ε_{1} is determined by the results in the preceding two sections, we can calculate the minimal polynomials of $\eta_{2}^{ \pm 1} \varepsilon_{1}$ and $\eta_{3} \varepsilon_{1}$ by a lemma similar to Lemma 2^{\prime} of [3].

Put $\xi=\eta_{3} \varepsilon_{1}$ and $\varepsilon=\sqrt{\xi}$. Then we can judge whether the real number ε belongs to K or not, using approximate values of η_{3} and ε_{1} together with $s(\xi), t(\xi), u(\xi), v(\xi), w(\xi), x(\xi)$. Namely, a proposition similar to Proposition 3 of [3] holds, because $s(\xi), t(\xi), u(\xi), v(\xi), w(\xi)$, $x(\xi)$ can be written explicitly as polynomials of $s(\varepsilon), t(\varepsilon), u(\varepsilon), v(\varepsilon), w(\varepsilon)$, $x(\varepsilon)$ if ε belongs to K, and because the possible values of $s(\varepsilon)$ and $w(\varepsilon)$ are bounded explicitly by elementary functions of η_{3} and ε_{1}. Moreover $s(\varepsilon), t(\varepsilon), u(\varepsilon), v(\varepsilon), w(\varepsilon), x(\varepsilon)$ are given during the test if ε belongs to K. Therefore an effective method for the determination of ε_{3} is given.

Similarly we can judge whether $\sqrt[3]{\eta_{2}^{ \pm 1} \varepsilon_{1}}$ belongs to K or not, using the minimal polynomial of $\eta_{2}^{ \pm 1} \varepsilon_{1}$ and approximate values of $\eta_{2}, \varepsilon_{1}$. For the determination of ε_{2}, we have the following proposition in addition.

Proposition 1. Let D_{3} be the discriminant of K_{3}, and let

$$
X^{3}-y X^{2}+z X-1
$$

be the minimal polynomial of η_{3} over $\boldsymbol{Q} . \quad$ Put $\varepsilon=\sqrt[3]{\eta_{2}}(>0)$,
(i) If ε belongs to K, the quadratic field $\boldsymbol{Q}\left(\sqrt{D_{3} D}\right)$ contains a primitive cubic root of unity, i.e. $\boldsymbol{Q}\left(\sqrt{D_{3} D}\right)=\boldsymbol{Q}(\sqrt{-3})$.
(ii) Assume $\boldsymbol{Q}\left(\sqrt{D_{3} \bar{D}}\right)=\boldsymbol{Q}(\sqrt{-3})$. Then

$$
X^{2}-\left(2 y^{3}-9 y z+27\right) X+\left(y^{2}-3 z\right)^{3}=0
$$

has an irrational real root γ in K_{2}. Furthermore, the real number ε belongs to K if and only if $\gamma \eta_{2}^{2}$ is a perfect cube in K_{2}.

Hence we have an effective way to decide ε_{2}.
§5. Elliptic unit. Every sextic field K in question is given in the following way. Let F be an imaginary quadratic number field with the discriminant -d. Let f be a natural number and $\Re(f)$ be the ring class group of F modulo f. Assume $\mathfrak{R}(f)$ contains a subgroup \mathfrak{H} of index 6 such that the conductor of \mathfrak{H} is exactly f. Let L be the class field of degree 6 over F corresponding to the ring class subgroup \mathfrak{H}. Then L is a dihedral extension of degree 12 over \boldsymbol{Q}. Let K be the maximal real subfield of L, then our assumption for K is satisfied. Conversely, when K is given, the galois closure L of K / Q is a dihedral extension of degree 12 over Q and is cyclic sextic over the imaginary quadratic subfield $F=\boldsymbol{Q}\left(\sqrt{D_{3}}\right)$, where D_{3} is the discriminant of K_{3}. Therefore L corresponds to a subgroup \mathfrak{U} of index 6 in $\mathfrak{R}(f)$ with a natural number f. This correspondence between K and \mathfrak{H} is one to one. We observe that $F=\boldsymbol{Q}(\sqrt{-3})$ if and only if K is pure sextic.

Let \mathfrak{U} be the subgroup of $\Re(f)$ which corresponds to K. Then the elliptic unit η of K is defined by the following:
$\eta=\prod_{t \in \mathfrak{u}} \sqrt{ } \operatorname{Im}\left(\gamma_{\mathrm{tt}}\right) \operatorname{Im}\left(\gamma_{\mathrm{r}^{3 t}}\right) / \operatorname{Im}\left(\gamma_{t}\right) \operatorname{Im}\left(\gamma_{\mathrm{r}^{2 t}}\right)\left|\eta\left(\gamma_{\mathrm{rt}}\right) \eta\left(\gamma_{\mathrm{r}^{3 t}}\right) / \eta\left(\gamma_{\mathrm{t}}\right) \eta\left(\gamma_{\mathrm{req}^{2} t}\right)\right|^{2}$.
Here $\eta(z)$ is the Dedekind eta function, and γ_{t} is a complex number with positive imaginary part such that $Z_{\gamma_{t}}+Z$ belongs to the class $\mathfrak{f} \in \mathfrak{R}(f)$. The class $\mathfrak{r} \in \mathfrak{R}(f)$ is chosen so that $\mathfrak{r l l}$ generates the cyclic quotient group $\mathfrak{R}(f) / \mathfrak{U}$. The definition of η is independent of the choice of $\gamma_{\text {t }}$ and \mathfrak{r}. Therefore, if $\mathfrak{R}(f)$ and \mathfrak{U} are explicitly given, we can calculate an approximate value of η using Lemma 3 of [2].

It is possible to obtain $\mathfrak{R}(f)$ and \mathfrak{U} explicitly, although it seems to be very complicated in the actual calculation.
§6. Appendix. (i) The following propositions help to deter$\operatorname{mine} \varepsilon_{2}$ and ε_{3}.

Proposition 2. (i) Assume h_{2} or h_{3} is odd. Then $\varepsilon_{3} \neq \eta_{3}$ if $\sqrt{\eta}$ does not belong to K. (ii) Assume h_{2} or h_{3} is prime to 3 . Then $\varepsilon_{2} \neq \eta_{2}$ if $\sqrt[3]{\eta}$ does not belong to K.

Proposition 3. Let f and d be as in §5, and let d_{2} be the discriminant of K_{2}. Assume $\sqrt[3]{\eta_{2}}$ belongs to K. Then $d=3 d_{2}$ or $3 d_{2}=d$; and f is a power of 3 .
(ii) The galois closure L of K / Q contains a totally imaginary sextic subfield K^{\prime} not conjugate to K. Further algorithm to compute the class number and fundamental units of K^{\prime} exists. It uses the results in [1].

Corrections to References [2] and [3]. In [2], we add the assumption that " $D \neq-23$ " throughout the note. See also [4] in detail. In Proposition 6 of [3], for ' $\sqrt{\eta_{e}}$ read " $\sqrt{\eta_{2}}$ ". In the definition of H_{+}in [3], line 6 of $\S 1$, for 'positive units' read "positive relative units".

References

[1] K. Nakamula: A construction of the groups of units of some number fields from certain subgroups (preprint).
[2] -: Class number calculation and elliptic unit. I. Proc. Japan Acad., $57 \mathrm{~A}, 56-59$ (1981).
[3] -: Class number calculation and elliptic unit. II. ibid., $57 \mathrm{~A}, 117-120$ (1981).
[4] -: Class number calculation of a cubic field from the elliptic unit (to appear in J. reine angew. Math.).
[5] R. Schertz: Über die Klassenzahl gewisser nicht galoisscher Körper 6-ten Grades. Abh. Math. Sem. Hamburg., 42, 217-224 (1974).

