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74. On Eisenstein Series or Siegel Modular Groups. II
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Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., June. 11, 1981)

Introduction. This is a continuation of [11]. We note the Fourier
coefficients of Eisenstein series concerning the ollowing two points"
the rationality and an interpretation of the explicit ormula. The
author would like to thank Profs. M. Harris, T. Oda, and D. Zagier
or kin’dly communicating their preprints" [4], [5], [18], [20]. (This
paper was revised into the present orm in March-April 1981 when the
author received their preprints; the original preprint was cited in
[9-II], [12].) We ollow the previous notations of [8]-[12].

1. L.functions. We fix our notation on two L-unctions at-
tached to Siegel eigenforms. Let f be a Siegel eigen modular orm in
M(F) or integers n>__0 and k>___0. We denote by Lx(s, f) the first L-
unction attached to f (an Euler product over Q of degree 2), which
is defined in Andrianov [1]. We put L(s, f)=Ll(S +n(2k-n--1)/4, f).
I n=O then L(s, f)=L(s, f)=5(s) (cf. [10, 3]). It is expected that
L(s, f) is meromorphic on C with unctional equation or sl--s.
This is known or ng2. A ormulation of Ramanujan conjecture or
f is that L(s, f) is unitary in the sense of [7]; c. [8, p. 150, p. 165].
We denote by L(s, f) the second L-unction attached to f (an Euler
product over Q o degree 2n/ 1), which is defined in Andrianov [2].
I n=O then L(s, f)=(s). It is expected that L(s, f) is meromorphic
on C with unctional equation or sl--s. This is proved in certain
cases by Shimura [19] and Andrianov-Kalinin [3]. For n--1 we have
L(s, f)=L(s+ k--l, f) in the previous notation.

We note relations between L-unctions or two liftings.
(A) For each eigen modular orm f in M(Fx) we have

L(s, [f])-- L(s-F (k- 2)/2, f)L(s- (k-- 2)/2, f) and
L(s, [f]) L(s, f)(s-+- k-- 2)(s-- k+ 2).

More generally let F be an eigen modular orm in M(F) such that
)(F) :/=0. Then we have

L(s, F) L(s+ (k- n)/2, (F))L(s- (k- n)/2, (F)) and
L(s, F) L(s, q(F))(s+ k-n)(s-- k+ n).

(B) For each eigen modular orm f in M_.(F) we have
L(s, a(f))=L(s, f)(s+l/2)(s- 1/2) and
L(s, a(f))=L(s+ 1/2, f)L(s- 1/2, f)5(s).

2. Fourier coefficients. For a modular form f in M(F) (n=O
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and k__>0) we denote by Q(f)* the extension field o Q generated by the
Fourier coefficients a(T, f) or all T_>_0. I f is an eigen modular orm,
then Q(f)* contains the field Q(f)=Q(2(f)) defined in [10]. I the
multiplicity o the eigencharacter 2(f) is one (i.e., m(2(f))= 1) and k is
even, then there exists a non-zero constant - e C such that Q(f)* Q(f)
=Q(,f) by Theorem 3 of [10].

We first treat Eisenstein series attached to the space M(F.) (in
the notation of [9-II]). There exi.sts a bijection a "M._.(F)M(F)
constructed by Zagier [20] using the result of Kohnen [6]. The follow-
ing theorem is proved similarly as in [11, Theorems 2-4].

Theorem 1. Let f be a modular form in M(F) for an even in-
teger kn+2 with an integer n>=2. Then"

(1) Assume that f is an eigen modular form. Then
m(2([f](-))) 1.

(2) Assume that f is an eigen modular form, and let F be an
eigen modular form in M(F) satisfying q-(F)=f Then F=[f](-).

(3) For each a e Aut (C) we have a([f](-))--[a(f)](-.
(4) Q([f](-))*-Q(f)*.
(5) Assume that f is an eigen modular form. Then there exists

a non-zero constant e C such that all the Fourier coefficients of
,[f](-) belong to Z(f).

Proof. The properties (2)-(5) ollow rom (1) as in [11]. (Note
that Theorem 3(2) o [11] is equivalent to Q([f](-))*=Q(f)*.) To
prove (1) let F be an eigen modular orm in M(F) satisfying 2(F)
--2([f](-). Put g=q-(F), then we have g=/=0 as in the proof of
Theorem 2 in [11] by using (p,f)=p-+p-+2(p,f) with an eigen
modular form f in M._2(F,). (We remark that, in [11] p. 52, 1.4 from
the bottom, "r" should be "n-r". For another method, see the proof
of Theorem 2 below.) Hence g is an eigen modular form in M(F)
satisfying (g)--(f) and L(s, g)=L(s,f)=(s--k+2)(s--k+l)L(s,
f,), so L(s, g) has a simple pole at s--k of residue (2)L(k,f)O (cf.
[8, 2.2(2)]). Hence we have g e M(F2), since if g e ML(F) then L(s, g)
is holomorphic on C by Oda [18] proved by using his results [17]. (This
holomorphy supports the Ramanujan conjecture [8, Conjecture 3]. We
may also use the result of Evdokimov cited in Oda [18] and Zagier [20].)
By the multiplicity one theorem for M_.(F,) and the bijection a,,
there exists a non-zero constant - e C such that g =-f. We put H--F
--[f](-). If H=/=0, then H is an eigen modular form in M,(F)satis-
fying 2(H)=2(F)=([f]-) and #n-(H)=O. This is impossible as
above. Hence H-0, and we have F=[f](n-). Q.E.D.

Next, we treat a more general case. The properties (2)-(4) of
Theorem 1 are generalized as in Theorem 2 below. Similar results
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are obtained in Harris [5].
Theorem 2. Let f be a modular form in M(F) for r>=O and

even kn+r+ l with n>_r. Then"
(1) Assume that f is an eigen modular form. Let F be an eigen

modular form in M(Fn) satisfying Cn-r(F)=f Then F=[f](n-r).
(2) For each a e Aut (C) we have a([f](n-r))= [a(f)] (n-).
(3) Q([f](n-r)),=Q(f)..
Proof. We prove (1); (2), (3) follow from (1) as in [11, Theorem

3]. We show first that (n-r(F):=O. Suppose that -r(F)=0 and let
n-] be the maximal integer <__n such that n-(r)=#=O. Then r+lg]
=<n and h=-(F) is an eigen cusp orm of degree ]. Let r--r(O) be
the rriaximal integer =<r such that (r-r()(f)=/=O, and put fo---(r-r()(f).
Then fo is an eigen cusp orm of degree r(0). Concerning the second
L-function, as in 1, we have"

L(s, F) =L(s, h) (s+ k--i)(s-- k+i),
i=j+l

L(s, [f](n- )) L(s,fo) (s+ k-- i)(s-- k+ i).
i=r (0) +1

Hence, by using 2(F)=2([f](n-)) (cf. [11, Remark 1]), we have

( ) L(s, h) --L(s, fo) [I 5(s + k-- i)5(s-- k/ i).
i=r(O) +1

Since the Euler product L(s, h) converges absolutely in Re (s)]+ 1
(see Andrianov-Kalinin [3]), the let hand side o (.) is holomorphic at
s=k-r(O)]+l, but the right hand side o (.) has a simple pole at
s k-- r(0) coming rom the simple pole o 5(s-- k+r(0) + 1). This con-
tradiction shows that (n-r(F)=/=O. We put H=F--[f](n-). I Hg=O,
then H is an eigen modular orm in M(F) satisfying 2(H)=2(F)
__([f](n-r)) and -(H)=0. This is impossible as shown above.
Hence H=0, and we have F--If] (n-r). Q.E.D.

Assuming a multiplicity one condition, we have Theorem 3 below.
This assumption is satisfied, or example, i f belongs to M(F) (resp.
M(F)), where Theorem 3 corresponds to [11, Theorems 2 and 4] (resp.
Theorem 1 above).

Theorem 3. Let f be an eigen modular form in M(F) for r>=O
and even kn+r+l with n>=r. Assume that m(2(f))=l. Then"

(1) m(([f](n-r))) 1.
(2) Q([f](-r))-Q(f).
(3) There exists a non-zero constant e C such that all the Fourier

coeicients of .[f](-) belong to Z(f). In particular Q(,[f](n-))*
Q(rf). Q(f) Q([f](n- )).
Proof. Let F be an eigen modular form in M(F) satisfying

2(F)=2([f](n-)). As shown in the proof of Theorem 2 above, we have
#n-(F) O. Put g =#-(F), then g is an eigen modular form.in M(F)
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satisfying (g)--2(f). Hence, by the assumption m((f))- 1, there
exists a non-zero constant - e C such that g--,f. Put H--F--y[f](-).
If H=/=0, then H is an eigen modular orm in M(F) satisfying (H)
--,(F)--([f]-) and -(H)--0. This is impossible as above. Hence
H--O, and F=[f]-. This proves (1). From m((f))--I (resp.
m(,(F))-l) and Theorem 3 o [10], there exists a non-zero constant
(resp. ,) in C such that Q(.f)*-Q(f) (resp. Q(,F)*-Q(F)). Hence,
by using Theorem 2(3) above, we have Q(F)Q(yF)*-Q(,f)*-Q(f)
and Q(f)c Q(y.f)*-Q(..F)* -Q(F). Hence Q(F)-Q(f). This proves
(2). Now (3) follows rom (1) and (2) by applying Theorem 3 o [10].

Q.E.D.
:. An interpretation of the explicit formula. For each eigen

modular form f in M(F) we have the explicit formula of the Fourier
coefficients a(T, [f]) of [f] in [12, Theorem 3]; see Maass [13], [14] and
Mizumoto [16]. Here we note an interpretation of this formula.

(1) Let f and g be modular forms of weight/c and respectively
for congruence subgroups of the Siegel modular group of degree n>__ 1.
We assume that they have the Fourier expansions of the following
form" f--, a(N)qv and g-, b(N)q, where N runs over all nn
symmetric semi-integral positive semi-definite matrices, and q
--exp (2/-1.trace (NZ)) with a variable Z on the Siegel upper half
space of degree n. We put D(s, f, g)-,( a(N)b(N)e(N)- det (N) -’,
where s is a variable in C, (N} runs over all unimodular (GL(n, Z)-)
equivalence classes of all N0, and e(N)-
This Dirichlet series ("Rankin convolution") was studied by Maass [15].
It is expected that D(s, f, g) is meromorphic on C. To have a simple
functional equation it would be better to consider the normalization
D*(s, f, g) which would be obtained from D(s, f, g) by multiplying a
finite number of Dirichlet L-functions. (Such a normalization is known
in certain cases.) Then D*(s, f, g) would have a functional equation
for s--+k+l-(n+ 1)/2-s.

(2) Let n>__ 1 and r>__ 1 be integers. Let T be an n n symmetric
semi-integral positive definite matrix. We denote by 3(r) the usual
theta function of degree r attached to T"

O(r , exp (2/- 1. trace (tMTMZ)),
M

where M runs over all n r integral matrices and Z is a variable on

the Siegel upper half space of degree r. It is known that O(r) is a

modular form of weight n/2 for a certain congruence subgroup of the
Siegel modular group of degree r. Let f be an eigen modular form
in M,(F) for k>=0. For s and s in C, we put

b(*)(T, f s, s)-D(*)(s, f, 3(r))/L(s., f),
where b(*) (resp. D*)) indicates b or b* (esp. D or D*). (We note that
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b(*)=D(*)=0 if nr.) To be precise, here we assume that (s)
=D(*)(s,+s,f, r , +s,f) is holomorphic as a unction o s at
s=0, and we understand that b(*(T, f s, s)=(0). We put b(*)(T, f)

b(*)(T, f k-1, k--1)=D(*(k-1, f, $))/L(k-1, f).
(3) The explicit ormula would suggest the 2ollowing. Let F be

an eigen modular orm in M(F) or n 1 and k 0. Let T be an n Xn
symmetric positive definite matrix. Then we might have "a(T,F)
=b(*)(T, -(F))" up to elementary factors for each r in lrn such
that -’(F)O. There exist two supporting examples" (I) n=2 and
r=l, (II) n=rl. The case (I) corresponds to the explicit ormula"
[12, Theorem 3], Maass [13], [14], and Mizumoto [16]. The case (II)
corresponds to the results o Shimura [19] and Andrianov [2]. (In both
cases b*(T, -(F)) is explicitly determined.)

(4) If L(s)=r C(S--So) is the Laurent expansion of a function
L(s) which is meromorphic at S=So with c0, then we consider V=c
as the special value of L(s) at S=So. Some results seem to suggest
that we would have the expression V A. P. R for certain special values
of L-functions, where A is the "algebraic part", P is the "period", and
R is the "regulator". Let f be an eigen cusp form in M,(F). If
n=l, then the special value V=L(k--1, f)=L2(2k--2, f) is written in
the form V=A.P. (We consider that R=I here.) We refer to [9],
[12] for an interpretation of the "numerator" of the "algebraic part"
A in connection with congruences and the explicit formula. If n1,
then we would need the "regulator" RI for the special value of
L(s, f) at s=k-1. (Special values at certain sk--n+l are treated
in Harris [4].) For example, does the interpretation "a(T,F)
=b(*)(T, O(F))" for F=[0] and T0 of size 3 suggest that 53 might
appear in the "numerator" of the "algebraic part" of the special value
L(9, Z0)=L(18, s)L(17, s)(9) (or L(18, )) ?

(5) Let f and g be as in (1). Then the above interpretation in
(3) is considered as an example of the expression of the special values
of D(s, f, g) by using the special values of D(s, -(f), -(g)) for
lrn. (Note that 8)=-(8n)) for theta functions in (2).) For
example, for each eigen modular form f in M(F) and T0 of size 2,
we have "b(T,[f])=b(T,f)" from the above (I) and (II) (n=r=2),
hence we have such an expression of the residue of D(s, [f], )) at
s=k--1 (simple pole) by using D(k-1, f, ).

Remark. We have similar results for some other liftings con-
taining generalizations and applications for the Eisenstein series map
in the vector valued Hilbert-Siegel modular case.
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