74. On Eisenstein Series for Siegel Modular Groups. II

By Nobushige KUROKAWA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., June 11, 1981)

Introduction. This is a continuation of [11]. We note the Fourier coefficients of Eisenstein series concerning the following two points: the rationality and an interpretation of the explicit formula. The author would like to thank Profs. M. Harris, T. Oda, and D. Zagier for kindly communicating their preprints: [4], [5], [18], [20]. (This paper was revised into the present form in March-April 1981 when the author received their preprints; the original preprint was cited in [9-II], [12].) We follow the previous notations of [8]–[12].

§1. L-functions. We fix our notation on two L-functions attached to Siegel eigenforms. Let f be a Siegel eigen modular form in $M_k(\Gamma_n)$ for integers $n \ge 0$ and $k \ge 0$. We denote by $L_1(s, f)$ the first Lfunction attached to f (an Euler product over Q of degree 2^n), which is defined in Andrianov [1]. We put $L_1^u(s, f) = L_1(s+n(2k-n-1)/4, f)$. If n=0 then $L_1(s, f) = L_1^u(s, f) = \zeta(s)$ (cf. [10, § 3]). It is expected that $L_1^u(s, f)$ is meromorphic on C with functional equation for $s \to 1-s$. This is known for $n \le 2$. A formulation of Ramanujan conjecture for f is that $L_1^u(s, f)$ is unitary in the sense of [7]; cf. [8, p. 150, p. 165]. We denote by $L_2^u(s, f)$ the second L-function attached to f (an Euler product over Q of degree 2n+1), which is defined in Andrianov [2]. If n=0 then $L_2^u(s, f)=\zeta(s)$. It is expected that $L_2^u(s, f)$ is meromorphic on C with functional equation for $s \to 1-s$. This is proved in certain cases by Shimura [19] and Andrianov-Kalinin [3]. For n=1 we have $L_2^u(s, f)=L_2(s+k-1, f)$ in the previous notation.

We note relations between *L*-functions for two liftings.

(A) For each eigen modular form f in $M_k(\Gamma_1)$ we have $L_1^u(s, [f]) = L_1^u(s + (k-2)/2, f)L_1^u(s - (k-2)/2, f)$ and $L_2^u(s, [f]) = L_2^u(s, f)\zeta(s + k - 2)\zeta(s - k + 2).$

More generally let F be an eigen modular form in $M_k(\Gamma_n)$ such that $\Phi(F) \neq 0$. Then we have

 $L_1^u(s,F) = L_1^u(s+(k-n)/2, \Phi(F))L_1^u(s-(k-n)/2, \Phi(F)) \text{ and } L_2^u(s,F) = L_2^u(s, \Phi(F))\zeta(s+k-n)\zeta(s-k+n).$

- (B) For each eigen modular form f in $M_{2k-2}(\Gamma_1)$ we have $L_1^u(s, \sigma_k(f)) = L_1^u(s, f)\zeta(s+1/2)\zeta(s-1/2)$ and $L_2^u(s, \sigma_k(f)) = L_1^u(s+1/2, f)L_1^u(s-1/2, f)\zeta(s).$
- §2. Fourier coefficients. For a modular form f in $M_k(\Gamma_n)$ $(n \ge 0)$

and $k \ge 0$ we denote by $Q(f)^*$ the extension field of Q generated by the Fourier coefficients a(T, f) for all $T \ge 0$. If f is an eigen modular form, then $Q(f)^*$ contains the field $Q(f) = Q(\lambda(f))$ defined in [10]. If the multiplicity of the eigencharacter $\lambda(f)$ is one (i.e., $m(\lambda(f)) = 1$) and k is even, then there exists a non-zero constant $\gamma \in C$ such that $Q(\gamma f)^* = Q(f) = Q(\gamma f)$ by Theorem 3 of [10].

We first treat Eisenstein series attached to the space $M_k^{I}(\Gamma_2)$ (in the notation of [9-II]). There exists a bijection $\sigma_k: M_{2k-2}(\Gamma_1) \rightarrow M_k^{I}(\Gamma_2)$ constructed by Zagier [20] using the result of Kohnen [6]. The following theorem is proved similarly as in [11, Theorems 2-4].

Theorem 1. Let f be a modular form in $M_k^1(\Gamma_2)$ for an even integer k > n+2 with an integer $n \ge 2$. Then:

(1) Assume that f is an eigen modular form. Then $m(\lambda([f]^{(n-2)}))=1.$

(2) Assume that f is an eigen modular form, and let F be an eigen modular form in $M_k(\Gamma_n)$ satisfying $\Phi^{n-2}(F) = f$. Then $F = [f]^{(n-2)}$.

(3) For each $\sigma \in \operatorname{Aut}(C)$ we have $\sigma([f]^{(n-2)}) = [\sigma(f)]^{(n-2)}$.

(4) $Q([f]^{(n-2)})^* = Q(f)^*.$

(5) Assume that f is an eigen modular form. Then there exists a non-zero constant $\gamma \in C$ such that all the Fourier coefficients of $\gamma[f]^{(n-2)}$ belong to Z(f).

Proof. The properties (2)-(5) follow from (1) as in [11]. (Note that Theorem 3(2) of [11] is equivalent to $Q([f]^{(n-1)})^* = Q(f)^*$.) To prove (1) let F be an eigen modular form in $M_k(\Gamma_n)$ satisfying $\lambda(F)$ $=\lambda([f]^{(n-2)})$. Put $g=\Phi^{n-2}(F)$, then we have $g\neq 0$ as in the proof of Theorem 2 in [11] by using $\lambda(p, f) = p^{k-2} + p^{k-1} + \lambda(p, f_1)$ with an eigen modular form f_1 in $M_{2k-2}(\Gamma_1)$. (We remark that, in [11] p. 52, l. 4 from the bottom, "r" should be "n-r". For another method, see the proof of Theorem 2 below.) Hence g is an eigen modular form in $M_k(\Gamma_2)$ satisfying $\lambda(g) = \lambda(f)$ and $L_1(s, g) = L_1(s, f) = \zeta(s-k+2)\zeta(s-k+1)L_1(s, g)$ f_1 , so $L_1(s, g)$ has a simple pole at s = k of residue $\zeta(2)L_1(k, f_1) > 0$ (cf. [8, 2.2(2)]). Hence we have $g \in M_k^{I}(\Gamma_2)$, since if $g \in M_k^{II}(\Gamma_2)$ then $L_1(s, g)$ is holomorphic on *C* by Oda [18] proved by using his results [17]. (This holomorphy supports the Ramanujan conjecture [8, Conjecture 3]. We may also use the result of Evdokimov cited in Oda [18] and Zagier [20].) By the multiplicity one theorem for $M_{2k-2}(\Gamma_1)$ and the bijection σ_k , there exists a non-zero constant $\gamma \in C$ such that $g = \gamma f$. We put H = F $-\gamma[f]^{(n-2)}$. If $H \neq 0$, then H is an eigen modular form in $M_k(\Gamma_n)$ satisfying $\lambda(H) = \lambda(F) = \lambda([f]^{(n-2)})$ and $\Phi^{n-2}(H) = 0$. This is impossible as above. Hence H=0, and we have $F=\gamma[f]^{(n-2)}$. Q.E.D.

Next, we treat a more general case. The properties (2)-(4) of Theorem 1 are generalized as in Theorem 2 below. Similar results **Eisenstein Series**

No. 6]

are obtained in Harris [5].

Theorem 2. Let f be a modular form in $M_k(\Gamma_r)$ for $r \ge 0$ and even k > n+r+1 with $n \ge r$. Then:

(1) Assume that f is an eigen modular form. Let F be an eigen modular form in $M_k(\Gamma_n)$ satisfying $\Phi^{n-r}(F) = f$. Then $F = [f]^{(n-r)}$.

- (2) For each $\sigma \in \operatorname{Aut}(C)$ we have $\sigma([f]^{(n-r)}) = [\sigma(f)]^{(n-r)}$.
- (3) $Q([f]^{(n-r)})^* = Q(f)^*.$

Proof. We prove (1); (2), (3) follow from (1) as in [11, Theorem 3]. We show first that $\Phi^{n-r}(F) \neq 0$. Suppose that $\Phi^{n-r}(F)=0$ and let n-j be the maximal integer $\leq n$ such that $\Phi^{n-j}(F)\neq 0$. Then $r+1\leq j \leq n$ and $h=\Phi^{n-j}(F)$ is an eigen cusp form of degree j. Let r-r(0) be the maximal integer $\leq r$ such that $\Phi^{r-r(0)}(f)\neq 0$, and put $f_0=\Phi^{r-r(0)}(f)$. Then f_0 is an eigen cusp form of degree r(0). Concerning the second L-function, as in § 1, we have:

$$L_{2}^{u}(s,F) = L_{2}^{u}(s,h) \prod_{i=j+1}^{n} \zeta(s+k-i)\zeta(s-k+i),$$

$$L_{2}^{u}(s,[f]^{(n-r)}) = L_{2}^{u}(s,f_{0}) \prod_{i=r(0)+1}^{n} \zeta(s+k-i)\zeta(s-k+i).$$

Hence, by using $\lambda(F) = \lambda([f]^{(n-\tau)})$ (cf. [11, Remark 1]), we have

(*)
$$L_2^u(s,h) = L_2^u(s,f_0) \prod_{i=r(0)+1}^j \zeta(s+k-i)\zeta(s-k+i).$$

Since the Euler product $L_2^u(s, h)$ converges absolutely in Re(s) > j+1(see Andrianov-Kalinin [3]), the left hand side of (*) is holomorphic at s=k-r(0)>j+1, but the right hand side of (*) has a simple pole at s=k-r(0) coming from the simple pole of $\zeta(s-k+r(0)+1)$. This contradiction shows that $\Phi^{n-r}(F) \neq 0$. We put $H=F-[f]^{(n-r)}$. If $H\neq 0$, then H is an eigen modular form in $M_k(\Gamma_n)$ satisfying $\lambda(H)=\lambda(F)$ $=\lambda([f]^{(n-r)})$ and $\Phi^{n-r}(H)=0$. This is impossible as shown above. Hence H=0, and we have $F=[f]^{(n-r)}$. Q.E.D.

Assuming a multiplicity one condition, we have Theorem 3 below. This assumption is satisfied, for example, if f belongs to $M_k(\Gamma_1)$ (resp. $M_k^{I}(\Gamma_2)$), where Theorem 3 corresponds to [11, Theorems 2 and 4] (resp. Theorem 1 above).

Theorem 3. Let f be an eigen modular form in $M_k(\Gamma_r)$ for $r \ge 0$ and even k > n+r+1 with $n \ge r$. Assume that $m(\lambda(f)) = 1$. Then:

(1) $m(\lambda([f]^{(n-r)}))=1.$

(2) $Q([f]^{(n-r)}) = Q(f).$

(3) There exists a non-zero constant $\gamma \in C$ such that all the Fourier coefficients of $\gamma[f]^{(n-r)}$ belong to Z(f). In particular $Q(\gamma[f]^{(n-r)})^* = Q(\gamma f)^* = Q(f) = Q([f]^{(n-r)}).$

Proof. Let F be an eigen modular form in $M_k(\Gamma_n)$ satisfying $\lambda(F) = \lambda([f]^{(n-r)})$. As shown in the proof of Theorem 2 above, we have $\Phi^{n-r}(F) \neq 0$. Put $g = \Phi^{n-r}(F)$, then g is an eigen modular form in $M_k(\Gamma_r)$

N. KUROKAWA

satisfying $\lambda(g) = \lambda(f)$. Hence, by the assumption $m(\lambda(f)) = 1$, there exists a non-zero constant $\gamma \in C$ such that $g = \gamma f$. Put $H = F - \gamma[f]^{(n-r)}$. If $H \neq 0$, then H is an eigen modular form in $M_k(\Gamma_n)$ satisfying $\lambda(H) = \lambda(F) = \lambda([f]^{(n-r)})$ and $\Phi^{n-r}(H) = 0$. This is impossible as above. Hence H = 0, and $F = \gamma[f]^{(n-r)}$. This proves (1). From $m(\lambda(f)) = 1$ (resp. $m(\lambda(F)) = 1$) and Theorem 3 of [10], there exists a non-zero constant γ_1 (resp. γ_2) in C such that $Q(\gamma_1 f)^* = Q(f)$ (resp. $Q(\gamma_2 F)^* = Q(F)$). Hence, by using Theorem 2(3) above, we have $Q(F) \subset Q(\gamma_1 F)^* = Q(\gamma_1 f)^* = Q(f)$ and $Q(f) \subset Q(\gamma_2 f)^* = Q(\gamma_2 F)^* = Q(F)$. Hence Q(F) = Q(f). This proves (2). Now (3) follows from (1) and (2) by applying Theorem 3 of [10]. Q.E.D.

§3. An interpretation of the explicit formula. For each eigen modular form f in $M_k(\Gamma_1)$ we have the explicit formula of the Fourier coefficients a(T, [f]) of [f] in [12, Theorem 3]; see Maass [13], [14] and Mizumoto [16]. Here we note an interpretation of this formula.

(1) Let f and g be modular forms of weight k and l respectively for congruence subgroups of the Siegel modular group of degree $n \geq 1$. We assume that they have the Fourier expansions of the following form: $f = \sum_{N} a(N)q^{N}$ and $g = \sum_{N} b(N)q^{N}$, where N runs over all $n \times n$ symmetric semi-integral positive semi-definite matrices, and q^{N} $=\exp(2\pi\sqrt{-1}\cdot\operatorname{trace}(NZ))$ with a variable Z on the Siegel upper half space of degree *n*. We put $D(s, f, g) = \sum_{\{N\}} a(N)b(N)\varepsilon(N)^{-1} \det(N)^{-s}$, where s is a variable in $C, \{N\}$ runs over all unimodular (GL(n, Z))equivalence classes of all N > 0, and $\varepsilon(N) = \# \{ U \in GL(n, \mathbb{Z}) \mid U \in U = N \}$. This Dirichlet series ("Rankin convolution") was studied by Maass [15]. It is expected that D(s, f, g) is meromorphic on C. To have a simple functional equation it would be better to consider the normalization $D^*(s, f, g)$ which would be obtained from D(s, f, g) by multiplying a finite number of Dirichlet L-functions. (Such a normalization is known in certain cases.) Then $D^*(s, f, g)$ would have a functional equation for $s \rightarrow k+l-(n+1)/2-s$.

(2) Let $n \ge 1$ and $r \ge 1$ be integers. Let T be an $n \times n$ symmetric semi-integral positive definite matrix. We denote by $\mathscr{D}_T^{(r)}$ the usual theta function of degree r attached to T:

 $\vartheta_T^{(r)} = \sum_{r} \exp(2\pi\sqrt{-1} \cdot \operatorname{trace}(^{\iota}MTMZ)),$

where M runs over all $n \times r$ integral matrices and Z is a variable on the Siegel upper half space of degree r. It is known that $\vartheta_T^{(r)}$ is a modular form of weight n/2 for a certain congruence subgroup of the Siegel modular group of degree r. Let f be an eigen modular form in $M_k(\Gamma_r)$ for $k \ge 0$. For s_1 and s_2 in C, we put

 $b^{(*)}(T, f; s_1, s_2) = D^{(*)}(s_1, f, \mathcal{G}_T^{(r)})/L_2^u(s_2, f),$

where $b^{(*)}$ (resp. $D^{(*)}$) indicates b or b^* (resp. D or D^*). (We note that

 $b^{(*)} = D^{(*)} = 0$ if n < r.) To be precise, here we assume that $\varphi(s) = D^{(*)}(s_1+s, f, \vartheta_T^{(r)})/L_2^u(s_2+s, f)$ is holomorphic as a function of s at s=0, and we understand that $b^{(*)}(T, f; s_1, s_2) = \varphi(0)$. We put $b^{(*)}(T, f) = b^{(*)}(T, f; k-1, k-1) = D^{(*)}(k-1, f, \vartheta_T^{(r)})/L_2^u(k-1, f)$.

(3) The explicit formula would suggest the following. Let F be an eigen modular form in $M_k(\Gamma_n)$ for $n \ge 1$ and $k \ge 0$. Let T be an $n \times n$ symmetric positive definite matrix. Then we might have "a(T, F) $=b^{(*)}(T, \Phi^{n-r}(F))$ " up to elementary factors for each r in $1 \le r \le n$ such that $\Phi^{n-r}(F) \ne 0$. There exist two supporting examples: (I) n=2 and r=1, (II) $n=r\ge 1$. The case (I) corresponds to the explicit formula: [12, Theorem 3], Maass [13], [14], and Mizumoto [16]. The case (II) corresponds to the results of Shimura [19] and Andrianov [2]. (In both cases $b^*(T, \Phi^{n-r}(F))$ is explicitly determined.)

(4) If $L(s) = \sum_{j \ge r} c_j (s - s_0)^j$ is the Laurent expansion of a function L(s) which is meromorphic at $s=s_0$ with $c_r \neq 0$, then we consider $V=c_r$ as the special value of L(s) at $s=s_0$. Some results seem to suggest that we would have the expression $V = A \cdot P \cdot R$ for certain special values of L-functions, where A is the "algebraic part", P is the "period", and R is the "regulator". Let f be an eigen cusp form in $M_k(\Gamma_n)$. If n=1, then the special value $V=L_2^u(k-1, f)=L_2(2k-2, f)$ is written in the form $V = A \cdot P$. (We consider that R = 1 here.) We refer to [9], [12] for an interpretation of the "numerator" of the "algebraic part" A in connection with congruences and the explicit formula. If n > 1, then we would need the "regulator" $R \neq 1$ for the special value of $L_2^u(s, f)$ at s = k-1. (Special values at certain s < k-n+1 are treated in Harris [4].) For example, does the interpretation "a(T, F) $=b^{(*)}(T, \Phi(F))$ " for $F=[\chi_{10}]$ and T>0 of size 3 suggest that 53 might appear in the "numerator" of the "algebraic part" of the special value $L_{2}^{u}(9, \gamma_{10}) = L_{1}(18, \varDelta_{18})L_{1}(17, \varDelta_{18})\zeta(9) \text{ (or } L_{1}(18, \varDelta_{18}))?$

(5) Let f and g be as in (1). Then the above interpretation in (3) is considered as an example of the expression of the special values of D(s, f, g) by using the special values of $D(s, \Phi^{n-r}(f), \Phi^{n-r}(g))$ for $1 \le r \le n$. (Note that $\vartheta_T^{(r)} = \Phi^{n-r}(\vartheta_T^{(n)})$ for theta functions in (2).) For example, for each eigen modular form f in $M_k(\Gamma_1)$ and T > 0 of size 2, we have "b(T, [f]) = b(T, f)" from the above (I) and (II) (n=r=2), hence we have such an expression of the residue of $D(s, [f], \vartheta_T^{(2)})$ at s = k-1 (simple pole) by using $D(k-1, f, \vartheta_T^{(1)})$.

Remark. We have similar results for some other liftings containing generalizations and applications for the Eisenstein series map in the vector valued Hilbert-Siegel modular case.

N. KUROKAWA

References

- A. N. Andrianov: Euler products corresponding to Siegel modular forms of genus 2. Russian Math. Surveys, 29, 45-116 (1974).
- [2] ——: Euler expansions of theta-transforms of Siegel modular forms of degree n. Math. USSR Sbornik, 34, 259-300 (1978).
- [3] A. N. Andrianov and V. L. Kalinin: On the analytic properties of standard zeta functions of Siegel modular forms. Math. USSR Sbornik, 35, 1-17 (1979).
- [4] M. Harris: Special values of zeta functions attached to Siegel modular forms (preprint).
- [5] ——: The rationality of holomorphic Eisenstein series (preprint).
- [6] W. Kohnen: Modular forms of half-integral weight on $\Gamma_0(4)$. Math. Ann., 248, 249-266 (1980).
- [7] N. Kurokawa: On the meromorphy of Euler products. Proc. Japan Acad., 54A, 163-166 (1978); II (preprint).
- [8] ——: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math., 49, 149–165 (1978).
- [9] ——: Congruences between Siegel modular forms of degree two. Proc. Japan Acad., 55A, 417-422 (1979); II. ibid., 57A, 140-145 (1981).
- [10] ——: On Siegel eigenforms. Proc. Japan Acad., 57A, 47-50 (1981).
- [11] ——: On Eisenstein series for Siegel modular groups. Proc. Japan Acad., 57A, 51-55 (1981).
- [12] N. Kurokawa and S. Mizumoto: On Eisenstein series of degree two. Proc. Japan Acad., 57A, 134-139 (1981).
- [13] H. Maass: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Dan. Vid. Selsk., 34, nr. 7 (1964).
- [14] ——: Über die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Dan. Vid. Selsk., 38, nr. 14 (1972).
- [15] —: Dirichletsche Reihen und Modulformen zweiten Grades. Acta Arith., 24, 225-238 (1973).
- [16] S. Mizumoto: Fourier coefficients of generalized Eisenstein series of degree two. Master Thesis, Tokyo Institute of Technology (March 1981) (to appear in Invent. Math.).
- [17] T. Oda: On modular forms associated with indefinite quadratic forms of signature (2, n-2). Math. Ann., 231, 97-144 (1977).
- [18] ——: On the poles of Andrianov's L-functions (preprint).
- [19] G. Shimura: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc., 31, 79-98 (1975).
- [20] D. Zagier: Sur la conjecture de Saito-Kurokawa (d'après H. Maass) (preprint).