74. On Eisenstein Series for Siegel Modular Groups. II

By Nobushige Kurokawa
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1981)

Introduction. This is a continuation of [11]. We note the Fourier coefficients of Eisenstein series concerning the following two points: the rationality and an interpretation of the explicit formula. The author would like to thank Profs. M. Harris, T. Oda, and D. Zagier for kindly communicating their preprints: [4], [5], [18], [20]. (This paper was revised into the present form in March-April 1981 when the author received their preprints; the original preprint was cited in [9-II], [12].) We follow the previous notations of [8]-[12].
$\S 1 . L$-functions. We fix our notation on two L-functions attached to Siegel eigenforms. Let f be a Siegel eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ for integers $n \geqq 0$ and $k \geqq 0$. We denote by $L_{1}(s, f)$ the first L function attached to f (an Euler product over \boldsymbol{Q} of degree 2^{n}), which is defined in Andrianov [1]. We put $L_{1}^{u}(s, f)=L_{1}(s+n(2 k-n-1) / 4, f)$. If $n=0$ then $L_{1}(s, f)=L_{1}^{u}(s, f)=\zeta(s)(c f .[10, \S 3])$. It is expected that $L_{1}^{u}(s, f)$ is meromorphic on C with functional equation for $s \rightarrow 1-s$. This is known for $n \leqq 2$. A formulation of Ramanujan conjecture for f is that $L_{1}^{u}(s, f)$ is unitary in the sense of [7]; cf. [8, p. 150, p. 165]. We denote by $L_{2}^{u}(s, f)$ the second L-function attached to f (an Euler product over \boldsymbol{Q} of degree $2 n+1$), which is defined in Andrianov [2]. If $n=0$ then $L_{2}^{u}(s, f)=\zeta(s)$. It is expected that $L_{2}^{u}(s, f)$ is meromorphic on C with functional equation for $s \rightarrow 1-s$. This is proved in certain cases by Shimura [19] and Andrianov-Kalinin [3]. For $n=1$ we have $L_{2}^{u}(s, f)=L_{2}(s+k-1, f)$ in the previous notation.

We note relations between L-functions for two liftings.
(A) For each eigen modular form f in $M_{k}\left(\Gamma_{1}\right)$ we have

$$
L_{1}^{u}(s,[f])=L_{1}^{u}(s+(k-2) / 2, f) L_{1}^{u}(s-(k-2) / 2, f) \quad \text { and }
$$

$$
L_{2}^{u}(s,[f])=L_{2}^{u}(s, f) \zeta(s+k-2) \zeta(s-k+2)
$$

More generally let F be an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ such that $\Phi(F) \neq 0$. Then we have

$$
L_{1}^{u}(s, F)=L_{1}^{u}(s+(k-n) / 2, \Phi(F)) L_{1}^{u}(s-(k-n) / 2, \Phi(F)) \quad \text { and }
$$

$$
L_{2}^{u}(s, F)=L_{2}^{u}(s, \Phi(F)) \zeta(s+k-n) \zeta(s-k+n)
$$

(B) For each eigen modular form f in $M_{2 k-2}\left(\Gamma_{1}\right)$ we have

$$
\begin{aligned}
& L_{1}^{u}\left(s, \sigma_{k}(f)\right)=L_{1}^{u}(s, f) \zeta(s+1 / 2) \zeta(s-1 / 2) \quad \text { and } \\
& L_{2}^{u}\left(s, \sigma_{k}(f)\right)=L_{1}^{u}(s+1 / 2, f) L_{1}^{u}(s-1 / 2, f) \zeta(s) .
\end{aligned}
$$

§2. Fourier coefficients. For a modular form f in $M_{k}\left(\Gamma_{n}\right)(n \geqq 0$
and $k \geqq 0$) we denote by $\boldsymbol{Q}(f)^{*}$ the extension field of \boldsymbol{Q} generated by the Fourier coefficients $\alpha\left(T, f^{\prime}\right)$ for all $T \geqq 0$. If f is an eigen modular form, then $\boldsymbol{Q}(f)^{*}$ contains the field $\boldsymbol{Q}(f)=\boldsymbol{Q}(\lambda(f))$ defined in [10]. If the multiplicity of the eigencharacter $\lambda(f)$ is one (i.e., $m(\lambda(f))=1)$ and k is even, then there exists a non-zero constant $\gamma \in \boldsymbol{C}$ such that $\boldsymbol{Q}(\gamma f)^{*}=\boldsymbol{Q}(f)$ $=\boldsymbol{Q}(\gamma f)$ by Theorem 3 of [10].

We first treat Eisenstein series attached to the space $M_{k}^{1}\left(\Gamma_{2}\right)$ (in the notation of [9-II]). There exists a bijection $\sigma_{k}: M_{2 k-2}\left(\Gamma_{1}\right) \rightarrow M_{k}^{\mathrm{I}}\left(\Gamma_{2}\right)$ constructed by Zagier [20] using the result of Kohnen [6]. The following theorem is proved similarly as in [11, Theorems 2-4].

Theorem 1. Let f be a modular form in $M_{k}^{I}\left(\Gamma_{2}\right)$ for an even integer $k>n+2$ with an integer $n \geqq 2$. Then:
(1) Assume that f is an eigen modular form. Then

$$
m\left(\lambda\left([f]^{(n-2)}\right)\right)=1
$$

(2) Assume that f is an eigen modular form, and let F be an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\Phi^{n-2}(F)=f$. Then $F=[f]^{(n-2)}$.
(3) For each $\sigma \in \operatorname{Aut}(C)$ we have $\sigma\left([f]^{(n-2)}\right)=[\sigma(f)]^{(n-2)}$.
(4) $\boldsymbol{Q}\left([f]^{(n-2)}\right)^{*}=\boldsymbol{Q}(f)^{*}$.
(5) Assume that f is an eigen modular form. Then there exists a non-zero constant $\gamma \in \boldsymbol{C}$ such that all the Fourier coefficients of $r[f]^{(n-2)}$ belong to $\boldsymbol{Z}(f)$.

Proof. The properties (2)-(5) follow from (1) as in [11]. (Note that Theorem 3(2) of [11] is equivalent to $\boldsymbol{Q}\left([f]^{(n-1)}\right)^{*}=\boldsymbol{Q}(f)^{*}$.) To prove (1) let F be an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\lambda(F)$ $=\lambda\left([f]^{(n-2)}\right)$. Put $g=\Phi^{n-2}(F)$, then we have $g \neq 0$ as in the proof of Theorem 2 in [11] by using $\lambda(p, f)=p^{k-2}+p^{k-1}+\lambda\left(p, f_{1}\right)$ with an eigen modular form f_{1} in $M_{2 k-2}\left(\Gamma_{1}\right)$. (We remark that, in [11] p. 52, 1. 4 from the bottom, " r " should be " $n-r$ ". For another method, see the proof of Theorem 2 below.) Hence g is an eigen modular form in $M_{k}\left(\Gamma_{2}\right)$ satisfying $\lambda(g)=\lambda(f)$ and $L_{1}(s, g)=L_{1}(s, f)=\zeta(s-k+2) \zeta(s-k+1) L_{1}(s$, f_{1}), so $L_{1}(s, g)$ has a simple pole at $s=k$ of residue $\zeta(2) L_{1}\left(k, f_{1}\right)>0$ (cf. [8, 2.2(2)]). Hence we have $g \in M_{k}^{\mathrm{I}}\left(\Gamma_{2}\right)$, since if $g \in M_{k}^{\mathrm{II}}\left(\Gamma_{2}\right)$ then $L_{1}(s, g)$ is holomorphic on \boldsymbol{C} by Oda [18] proved by using his results [17]. (This holomorphy supports the Ramanujan conjecture [8, Conjecture 3]. We may also use the result of Evdokimov cited in Oda [18] and Zagier [20].) By the multiplicity one theorem for $M_{2 k-2}\left(\Gamma_{1}\right)$ and the bijection σ_{k}, there exists a non-zero constant $\gamma \in C$ such that $g=\gamma f$. We put $H=F$ $-\gamma[f]^{(n-2)}$. If $H \neq 0$, then H is an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\lambda(H)=\lambda(F)=\lambda\left([f]^{(n-2)}\right)$ and $\Phi^{n-2}(H)=0$. This is impossible as above. Hence $H=0$, and we have $F=\gamma[f]^{(n-2)}$.
Q.E.D.

Next, we treat a more general case. The properties (2)-(4) of Theorem 1 are generalized as in Theorem 2 below. Similar results
are obtained in Harris [5].
Theorem 2. Let f be a modular form in $M_{k}\left(\Gamma_{r}\right)$ for $r \geqq 0$ and even $k>n+r+1$ with $n \geqq r$. Then:
(1) Assume that f is an eigen modular form. Let F be an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\Phi^{n-r}(F)=f$. Then $F=[f]^{(n-r)}$.
(2) For each $\sigma \in \operatorname{Aut}(\boldsymbol{C})$ we have $\sigma\left([f]^{(n-r)}\right)=[\sigma(f)]^{(n-r)}$.
(3) $\boldsymbol{Q}\left([f]^{(n-r)}\right)^{*}=\boldsymbol{Q}(f)^{*}$.

Proof. We prove (1); (2), (3) follow from (1) as in [11, Theorem 3]. We show first that $\Phi^{n-r}(F) \neq 0$. Suppose that $\Phi^{n-r}(F)=0$ and let $n-j$ be the maximal integer $\leqq n$ such that $\Phi^{n-j}(F) \neq 0$. Then $r+1 \leqq j$ $\leqq n$ and $h=\Phi^{n-j}(F)$ is an eigen cusp form of degree j. Let $r-r(0)$ be the maximal integer $\leqq r$ such that $\Phi^{r-r(0)}(f) \neq 0$, and put $f_{0}=\Phi^{r-r(0)}(f)$. Then f_{0} is an eigen cusp form of degree $r(0)$. Concerning the second L-function, as in $\S 1$, we have:

$$
\begin{aligned}
& L_{2}^{u}(s, F)=L_{2}^{u}(s, h) \prod_{i=j+1}^{n} \zeta(s+k-i) \zeta(s-k+i), \\
& L_{2}^{u}\left(s,[f]^{(n-r)}\right)=L_{2}^{u}\left(s, f_{0}\right) \prod_{i=r(0)+1}^{n} \zeta(s+k-i) \zeta(s-k+i) .
\end{aligned}
$$

Hence, by using $\lambda(F)=\lambda\left([f]^{(n-r)}\right)$ (cf. [11, Remark 1]), we have
(*)

$$
L_{2}^{u}(s, h)=L_{2}^{u}\left(s, f_{0}\right) \prod_{i=r(0)+1}^{j} \zeta(s+k-i) \zeta(s-k+i) .
$$

Since the Euler product $L_{2}^{u}(s, h)$ converges absolutely in $\operatorname{Re}(s)>j+1$ (see Andrianov-Kalinin [3]), the left hand side of (*) is holomorphic at $s=k-r(0)>j+1$, but the right hand side of (*) has a simple pole at $s=k-r(0)$ coming from the simple pole of $\zeta(s-k+r(0)+1)$. This contradiction shows that $\Phi^{n-r}(F) \neq 0$. We put $H=F-[f]^{(n-r)}$. If $H \neq 0$, then H is an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\lambda(H)=\lambda(F)$ $=\lambda\left([f]^{(n-r)}\right)$ and $\Phi^{n-r}(H)=0$. This is impossible as shown above. Hence $H=0$, and we have $F=[f]^{(n-r)}$. Q.E.D.

Assuming a multiplicity one condition, we have Theorem 3 below. This assumption is satisfied, for example, if f belongs to $M_{k}\left(\Gamma_{1}\right)$ (resp. $M_{k}^{\mathrm{I}}\left(\Gamma_{2}\right)$), where Theorem 3 corresponds to [11, Theorems 2 and 4] (resp. Theorem 1 above).

Theorem 3. Let f be an eigen modular form in $M_{k}\left(\Gamma_{r}\right)$ for $r \geqq 0$ and even $k>n+r+1$ with $n \geqq r$. Assume that $m(\lambda(f))=1$. Then :
(1) $\quad m\left(\lambda\left([f]^{(n-r)}\right)\right)=1$.
(2) $\boldsymbol{Q}\left([f]^{(n-r)}\right)=\boldsymbol{Q}(f)$.
(3) There exists a non-zero constant $\gamma \in \boldsymbol{C}$ such that all the \boldsymbol{F} ourier coefficients of $\gamma[f]^{(n-r)}$ belong to $\boldsymbol{Z}(f)$. In particular $\boldsymbol{Q}\left(\gamma[f]^{(n-r)}\right)^{*}$ $=\boldsymbol{Q}(\gamma f)^{*}=\boldsymbol{Q}(f)=\boldsymbol{Q}\left([f]^{(n-r)}\right)$.

Proof. Let F be an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\lambda(F)=\lambda\left([f]^{(n-r)}\right)$. As shown in the proof of Theorem 2 above, we have $\Phi^{n-r}(F) \neq 0$. Put $g=\Phi^{n-r}(F)$, then g is an eigen modular form in $M_{k}\left(\Gamma_{r}\right)$
satisfying $\lambda(g)=\lambda(f)$. Hence, by the assumption $m(\lambda(f))=1$, there exists a non-zero constant $\gamma \in C$ such that $g=\gamma f$. Put $H=F-\gamma[f]^{(n-r)}$. If $H \neq 0$, then H is an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ satisfying $\lambda(H)$ $=\lambda(F)=\lambda\left([f]^{(n-r)}\right)$ and $\Phi^{n-r}(H)=0$. This is impossible as above. Hence $H=0$, and $F=\gamma[f]^{(n-r)}$. This proves (1). From $m(\lambda(f))=1$ (resp. $m(\lambda(F))=1)$ and Theorem 3 of [10], there exists a non-zero constant γ_{1} (resp. γ_{2}) in \boldsymbol{C} such that $\boldsymbol{Q}\left(\gamma_{1} f\right)^{*}=\boldsymbol{Q}(f)$ (resp. $\boldsymbol{Q}\left(\gamma_{2} F\right)^{*}=\boldsymbol{Q}(F)$). Hence, by using Theorem 2(3) above, we have $\boldsymbol{Q}(F) \subset \boldsymbol{Q}\left(\gamma_{1} \boldsymbol{F}\right)^{*}=\boldsymbol{Q}\left(\gamma_{1} f\right)^{*}=\boldsymbol{Q}(f)$ and $\boldsymbol{Q}(f) \subset \boldsymbol{Q}\left(\gamma_{2} f\right)^{*}=\boldsymbol{Q}\left(\gamma_{2} \boldsymbol{F}\right)^{*}=\boldsymbol{Q}(\boldsymbol{F})$. Hence $\boldsymbol{Q}(F)=\boldsymbol{Q}(f)$. This proves (2). Now (3) follows from (1) and (2) by applying Theorem 3 of [10].
Q.E.D.
§3. An interpretation of the explicit formula. For each eigen modular form f in $M_{k}\left(\Gamma_{1}\right)$ we have the explicit formula of the Fourier coefficients $a(T,[f])$ of [f] in [12, Theorem 3]; see Maass [13], [14] and Mizumoto [16]. Here we note an interpretation of this formula.
(1) Let f and g be modular forms of weight k and l respectively for congruence subgroups of the Siegel modular group of degree $n \geqq 1$. We assume that they have the Fourier expansions of the following form: $f=\sum_{N} a(N) q^{N}$ and $g=\sum_{N} b(N) q^{N}$, where N runs over all $n \times n$ symmetric semi-integral positive semi-definite matrices, and q^{N} $=\exp (2 \pi \sqrt{-1} \cdot \operatorname{trace}(N Z))$ with a variable Z on the Siegel upper half space of degree n. We put $D(s, f, g)=\sum_{\{N\}} a(N) b(N) \varepsilon(N)^{-1} \operatorname{det}(N)^{-s}$, where s is a variable in $C,\{N\}$ runs over all unimodular ($G L(n, Z)$-) equivalence classes of all $N>0$, and $\varepsilon(N)=\#\left\{\left.U \in G L(n, Z)\right|^{t} U N U=N\right\}$. This Dirichlet series ("Rankin convolution") was studied by Maass [15]. It is expected that $D(s, f, g)$ is meromorphic on C. To have a simple functional equation it would be better to consider the normalization $D^{*}(s, f, g)$ which would be obtained from $D(s, f, g)$ by multiplying a finite number of Dirichlet L-functions. (Such a normalization is known in certain cases.) Then $D^{*}(s, f, g)$ would have a functional equation for $s \rightarrow k+l-(n+1) / 2-s$.
(2) Let $n \geqq 1$ and $r \geqq 1$ be integers. Let T be an $n \times n$ symmetric semi-integral positive definite matrix. We denote by $\vartheta_{T}^{(r)}$ the usual theta function of degree r attached to T :

$$
\vartheta_{T}^{(r)}=\sum_{M} \exp \left(2 \pi \sqrt{-1} \cdot \operatorname{trace}\left({ }^{(} M T M Z\right)\right),
$$

where M runs over all $n \times r$ integral matrices and Z is a variable on the Siegel upper half space of degree r. It is known that $\vartheta_{T}^{(r)}$ is a modular form of weight $n / 2$ for a certain congruence subgroup of the Siegel modular group of degree r. Let f be an eigen modular form in $M_{k}\left(\Gamma_{r}\right)$ for $k \geqq 0$. For s_{1} and s_{2} in C, we put

$$
b^{(*)}\left(T, f ; s_{1}, s_{2}\right)=D^{(*)}\left(s_{1}, f, \vartheta_{T}^{(r)}\right) / L_{2}^{u}\left(s_{2}, f\right)
$$

where $b^{(*)}\left(\operatorname{resp} . D^{(*)}\right)$ indicates b or $b^{*}\left(r e s p . D\right.$ or $\left.D^{*}\right)$. (We note that
$b^{(*)}=D^{(*)}=0$ if $n<r$.) To be precise, here we assume that $\varphi(s)$ $=D^{(*)}\left(s_{1}+s, f, \vartheta_{T}^{(r)}\right) / L_{2}^{u}\left(s_{2}+s, f\right)$ is holomorphic as a function of s at $s=0$, and we understand that $b^{(*)}\left(T, f ; s_{1}, s_{2}\right)=\varphi(0)$. We put $b^{(*)}(T, f)$ $=b^{(*)}(T, f ; k-1, k-1)=D^{*}\left(k-1, f, \vartheta_{T}^{(r)}\right) / L_{2}^{u}(k-1, f)$.
(3) The explicit formula would suggest the following. Let F be an eigen modular form in $M_{k}\left(\Gamma_{n}\right)$ for $n \geqq 1$ and $k \geqq 0$. Let T be an $n \times n$ symmetric positive definite matrix. Then we might have " $\alpha(T, F)$ $=b^{(*)}\left(T, \Phi^{n-r}(F)\right)$ " up to elementary factors for each r in $1 \leqq r \leqq n$ such that $\Phi^{n-r}(F) \neq 0$. There exist two supporting examples: (I) $n=2$ and $r=1$, (II) $n=r \geqq 1$. The case (I) corresponds to the explicit formula: [12, Theorem 3], Maass [13], [14], and Mizumoto [16]. The case (II) corresponds to the results of Shimura [19] and Andrianov [2]. (In both cases $b^{*}\left(T, \Phi^{n-r}(F)\right)$ is explicitly determined.)
(4) If $L(s)=\sum_{j \geqq r} c_{j}\left(s-s_{0}\right)^{j}$ is the Laurent expansion of a function $L(s)$ which is meromorphic at $s=s_{0}$ with $c_{r} \neq 0$, then we consider $V=c_{r}$ as the special value of $L(s)$ at $s=s_{0}$. Some results seem to suggest that we would have the expression $V=A \cdot P \cdot R$ for certain special values of L-functions, where A is the "algebraic part", P is the "period", and R is the "regulator". Let f be an eigen cusp form in $M_{k}\left(\Gamma_{n}\right)$. If $n=1$, then the special value $V=L_{2}^{u}(k-1, f)=L_{2}(2 k-2, f)$ is written in the form $V=A \cdot P$. (We consider that $R=1$ here.) We refer to [9], [12] for an interpretation of the "numerator" of the "algebraic part" A in connection with congruences and the explicit formula. If $n>1$, then we would need the "regulator" $R \neq 1$ for the special value of $L_{2}^{u}(s, f)$ at $s=k-1$. (Special values at certain $s<k-n+1$ are treated in Harris [4].) For example, does the interpretation " $a(T, F)$ $=b^{(*)}(T, \Phi(F))$ " for $F=\left[\chi_{10}\right]$ and $T>0$ of size 3 suggest that 53 might appear in the "numerator" of the "algebraic part" of the special value $L_{2}^{u}\left(9, \chi_{10}\right)=L_{1}\left(18, \Delta_{18}\right) L_{1}\left(17, \Delta_{18}\right) \zeta(9)\left(\right.$ or $\left.L_{1}\left(18, \Delta_{18}\right)\right)$?
(5) Let f and g be as in (1). Then the above interpretation in (3) is considered as an example of the expression of the special values of $D(s, f, g)$ by using the special values of $D\left(s, \Phi^{n-r}(f), \Phi^{n-r}(g)\right)$ for $1 \leqq r \leqq n$. (Note that $\vartheta_{T}^{(r)}=\Phi^{n-r}\left(\vartheta_{T}^{(n)}\right)$ for theta functions in (2).) For example, for each eigen modular form f in $M_{k}\left(\Gamma_{1}\right)$ and $T>0$ of size 2, we have " $b(T,[f])=b(T, f)$ " from the above (I) and (II) ($n=r=2$), hence we have such an expression of the residue of $D\left(s,[f], \vartheta_{T}^{(2)}\right)$ at $s=k-1$ (simple pole) by using $D\left(k-1, f, \vartheta_{T}^{(1)}\right)$.

Remark. We have similar results for some other liftings containing generalizations and applications for the Eisenstein series map in the vector valued Hilbert-Siegel modular case.

References

[1] A. N. Andrianov: Euler products corresponding to Siegel modular forms of genus 2. Russian Math. Surveys, 29, 45-116 (1974).
[2] -: Euler expansions of theta-transforms of Siegel modular forms of degree n. Math. USSR Sbornik, 34, 259-300 (1978).
[3] A. N. Andrianov and V. L. Kalinin: On the analytic properties of standard zeta functions of Siegel modular forms. Math. USSR Sbornik, 35, 1-17 (1979).
[4] M. Harris: Special values of zeta functions attached to Siegel modular forms (preprint).
[5] -: The rationality of holomorphic Eisenstein series (preprint).
[6] W. Kohnen: Modular forms of half-integral weight on $\Gamma_{0}(4)$. Math. Ann., 248, 249-266 (1980).
[7] N. Kurokawa: On the meromorphy of Euler products. Proc. Japan Acad., 54A, 163-166 (1978) ; II (preprint).
[8] --: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math., 49, 149-165 (1978).
[9] -: Congruences between Siegel modular forms of degree two. Proc. Japan Acad., 55A, 417-422 (1979) ; II. ibid., 57A, 140-145 (1981).
[10] -: On Siegel eigenforms. Proc. Japan Acad., 57A, 47-50 (1981).
[11] -: On Eisenstein series for Siegel modular groups. Proc. Japan Acad., 57A, 51-55 (1981).
[12] N. Kurokawa and S. Mizumoto: On Eisenstein series of degree two. Proc. Japan Acad., 57A, 134-139 (1981).
[13] H. Maass: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Dan. Vid. Selsk., 34, nr. 7 (1964).
[14] -: Über die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Dan. Vid. Selsk., 38, nr. 14 (1972).
[15] -: Dirichletsche Reihen und Modulformen zweiten Grades. Acta Arith., 24, 225-238 (1973).
[16] S. Mizumoto: Fourier coefficients of generalized Eisenstein series of degree two. Master Thesis, Tokyo Institute of Technology (March 1981) (to appear in Invent. Math.).
[17] T. Oda: On modular forms associated with indefinite quadratic forms of signature (2, $n-2$). Math. Ann., 231, 97-144 (1977).
[18] -: On the poles of Andrianov's L-functions (preprint).
[19] G. Shimura: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc., 31, 79-98 (1975).
[20] D. Zagier: Sur la conjecture de Saito-Kurokawa (d’après H. Maass) (preprint).

