The Case of 1 Dimensional τ -Sherical Functions

By Takeshi KAWAZOE Department of Mathematics, Faculty of Science and Technology, Keio University

(Communicated by Kôsaku Yosida, M. J. A., June 11, 1981)

In the previous paper [4] we obtained an analogue of Paley-Wiener theorem on SU(2, 2). In this article we shall give more precise results about this theorem, particularly, replace the condition (C1) in [4] by explicit conditions (cf. (C2)–(C4) in § 5).

1. Notation and assumptions. Let G be a connected semisimple Lie group with finite center and G = KAN an Iwasawa decomposition for G. Let M be the centralizer of A in K and put P = MAN. Then P is a minimal parabolic subgroup of G. We denote the Lie algebras by small German letters. Let Σ denote the set of all roots for the pair (g, a) and W the corresponding Weyl group. Let Σ^+ denote the set of all positive roots in Σ and α^+ the corresponding positive Weyl chamber in α . Put $\rho = (1/2) \sum_{\beta \in \Sigma^+} \beta$. For simplicity we denote the dual space of α by \mathcal{F} and its complexification by \mathcal{F}^c . Put $\mathcal{F}^+ = \{\lambda \in \mathcal{F}; \langle \lambda, \alpha \rangle > 0 \text{ for all } \alpha \in \Sigma^+\}$ and $A^+ = \exp \alpha^+$.

For any root α in Σ let α_{α} denote the hyperplane of $\alpha = 0$ in α and put $A_{\alpha} = \exp \alpha_{\alpha}$. Let L_{α} denote the centralizer of A_{α} in G. Then it is easy to see that $L_{\alpha} = M_{\alpha}A_{\alpha}$, where $M_{\alpha} = \bigcap_{\chi \in X(L_{\alpha})} \operatorname{Ker} |\chi| (X(L_{\alpha})$ is the group of all continuous homomorphisms of L_{α} into the multiplicative group of real numbers). Then we can define the parabolic subgroup $P_{\alpha} = M_{\alpha}A_{\alpha}N_{\alpha}$ such that $N_{\alpha} \subset N$. Put $*P_{\alpha} = P \cap M_{\alpha}$ and $*A_{\alpha} = A \cap M_{\alpha}$, $*N_{\alpha} = N \cap M_{\alpha}$. Then it is easy to see that $*P_{\alpha} = M^*A_{\alpha}*N_{\alpha}$ is a minimal parabolic subgroup of M_{α} and dim $*A_{\alpha} = 1$. For this pair $(M_{\alpha}, *A_{\alpha})$ we define $*\rho, *\mathcal{F}_{\alpha}, *\mathcal{F}_{\alpha}^{*}, *\mathcal{F}_{\alpha}^{*}$ and $*A_{\alpha}^{*}$ by the same way, where $\lambda(*a) > 0$ for $*a \in *A_{\alpha}^{*}$ and $\lambda \in \mathcal{F}^{+}$.

Let $\tau = (\tau_1, \tau_2)$ be a unitary double representation of K on a finite dimensional Hilbert space V. Let $\mathcal{C}(G, \tau)$ denote the τ -spherical Schwartz space on G and $^{\circ}\mathcal{C}(G, \tau)$ the closed subspace of $\mathcal{C}(G, \tau)$ consisting of all cusp forms. For any parabolic subgroup $Q = M_Q A_Q N_Q$ of G let $\mathcal{C}_{A_Q}(G, \tau)$ denote the closed subspace of $\mathcal{C}(G, \tau)$ consisting of all wave packets corresponding to Q (cf. [2, § 26]). Let τ_M and $\tau_{M_\alpha}(\alpha \in \Sigma^+)$ denote the restrictions of τ to M and $M_\alpha \cap K$ respectively. Then for the τ_M (resp. $\tau_{M_{\alpha}}$)-spherical Schwartz space $\mathcal{C}(M, \tau_M)$ (resp. $\mathcal{C}(M_{\alpha}, \tau_{M_{\alpha}})$) we define the above closed subspaces by the same way.

In this article we accept the following assumptions; (A1) dim A = 2, (A2) dim V=1, (A3) $\mathcal{C}(G,\tau) = {}^{\circ}\mathcal{C}(G,\tau) \oplus \mathcal{C}_{A_{\alpha}}(G,\tau) \oplus \mathcal{C}_{A}(G,\tau)$ for $\alpha \in CL(\mathcal{F}^{+})$, (A4) $\{s\alpha; s \in W\} \cap \Sigma^{+} \subset \{\alpha, \varepsilon_{1}, \varepsilon_{2}\}$, where $\{\varepsilon_{1}, \varepsilon_{2}\}$ is the fundamental system of positive roots. In these assumptions, (A2) is essential, for the operators: $\Phi(\nu: \alpha)$ ($\alpha \in A^{+}$) and $C(s; \nu)$ ($s \in W$) (see §§ 3, 4) are *C*-valued meromorphic functions of ν on \mathcal{F}^{c} and moreover $\Phi(\nu: \alpha)$ is holomorphic on $\mathcal{F} + \sqrt{-1}CL(\mathcal{F}^{+})$ under (A2).

2. Fourier transform on $\mathcal{C}(G, \tau)$. Let $e_k (1 \le k \le n')$ and $\psi_{\alpha,i}$ $(1 \le i \le l')$ (cf. § 3, Theorem 4) denote orthonormal basis for $L_G = {}^{\circ}\mathcal{C}(G, \tau)$ and $L_{M_{\alpha}} = {}^{\circ}\mathcal{C}(M_{\alpha}, \tau_{M_{\alpha}})$ respectively. Then for f in $\mathcal{C}(G, \tau)$ its Fourier transform E(f) is defined as follows;

 $E(f) = ((f, e_k))_{k=1}^{n'} \oplus (\hat{f}(\psi_{\alpha,i}, \nu_{\alpha}))_{i=1}^{l'} \oplus \hat{f}(\nu) \qquad (\nu \in \mathcal{F}_{\alpha} \text{ and } \nu \in \mathcal{F}),$ where $\hat{f}(\psi_{\alpha,i}, \nu_{\alpha}) = (f, E(P : \psi_{\alpha,i} : \nu_{\alpha} : \cdot))$ and $\hat{f}(\nu) = (f, E(P : 1 : \nu : \cdot))$ (see [3]). Obviously, E(f) is contained in $C^{n'} \oplus \mathcal{C}(\mathcal{F}_{\alpha})^{l'} \oplus \mathcal{C}(\mathcal{F}),$ where $\mathcal{C}(\mathcal{F}_{\alpha})$ (resp. $\mathcal{C}(\mathcal{F})$) is the usual Schwartz space on \mathcal{F}_{α} (resp. \mathcal{F}). Here we define the closed subspace $\mathcal{C}(\mathcal{F}_{\alpha})_{k}^{l'}$ of $\mathcal{C}(\mathcal{F}_{\alpha})^{l'}$ (resp. $\mathcal{C}(\mathcal{F})_{k}$ of $\mathcal{C}(\mathcal{F})$) as in [3]. Then we obtained the following theorem in [3].

Theorem 1. The Fourier transform sets up a homeomorphism of $\mathcal{C}(G, \tau) = {}^{\circ}\mathcal{C}(G, \tau) \oplus \mathcal{C}_{A_{\alpha}}(G, \tau) \oplus \mathcal{C}_{A}(G, \tau)$ and $\hat{\mathcal{C}}(G, \tau) = \mathbf{C}^{n'} \oplus \mathcal{C}(\mathcal{F}_{\alpha})_{*}^{\nu'} \oplus \mathcal{C}(\mathcal{F})_{*}$. The inverse transform is given by

$$f(x) = \sum_{k=1}^{n'} (f, e_k) e_k(x) + \sum_{i=1}^{\iota'} \frac{1}{|W_{\alpha}|} \int_{\mathcal{F}_{\alpha}} \mu(\sigma_i, \nu_{\alpha}) E(P_{\alpha} : \psi_{\alpha,i} : \nu_{\alpha} : x) \hat{f}(\psi_{\alpha,i}, \nu_{\alpha}) d\nu_{\alpha}$$
$$+ \frac{1}{|W|} \int_{\mathcal{F}} \mu(\nu) E(P : \mathbf{1} : \nu : x) \hat{f}(\nu) d\nu \qquad (x \in G),$$

where W_{α} is the Weyl group for (G, A_{α}) and σ_i $(1 \le i \le l')$ is the discrete series for M_{α} such that $\psi_{\alpha,i}$ is the matrix coefficient of σ_i .

Before stating the main result, we have to obtain some information for M_{α} (see § 3) and calculate residue integrals (see § 4).

3. Analysis on M_{α} . Let us agree to write the Harish-Chandra expansion of the Eisenstein integral for $(M_{\alpha}, *P_{\alpha})$ as follows;

$$\begin{split} E({}^*P_a:1:{}^*\nu_a:{}^*a) &= e^{-*\rho(\log(*a))} \{\varPhi_a({}^*\nu_a:a)C_a({}^*\nu_a) + \varPhi_a(-{}^*\nu_a:{}^*a)C_a(-{}^*\nu_a)\} \\ \text{for } {}^*a &\in {}^*A_a^+ \text{ and } {}^*\nu_a \in {}^*\mathcal{F}_a^c. \quad \text{Let } \{{}^*\xi_i:1 \leq i \leq l\} \text{ denote the set of all poles} \\ \text{of } \varPhi_a({}^*\nu_a:{}^*a)C_a({}^*\nu_a)^{*-1} \text{ on } {}^*\mathcal{F}_a + \sqrt{-1}CL({}^*\mathcal{F}_a^+). \quad \text{Then it is easy to see} \\ \text{that } {}^*\xi_i \in \sqrt{-1}{}^*\mathcal{F}_a^+. \quad \text{Here we note that } \mu_a({}^*\nu_a), \text{ the } \mu\text{-function for} \\ (M_a,{}^*P_a), \text{ has at most simple pole or zero at } {}^*\nu_a = {}^*\xi_i \neq 0 \text{ and } \varPhi_a({}^*\nu_a:{}^*a) \\ \text{is holomorphic on } {}^*\mathcal{F}_a + \sqrt{-1}CL({}^*\mathcal{F}_a^+). \quad \text{Therefore using the relation:} \\ \mu_a({}^*\nu_a)C_a({}^*\nu_a) {}^*C_a({}^*\nu_a) {}^=1 ({}^*\nu_a \in {}^*\mathcal{F}_a^c), \text{ we can obtain the following} \end{split}$$

Lemma 3. Each $\xi_i \ (1 \le i \le l)$ is a simple pole of $\mu_a(*\nu_a)$ and $E(*P_a: 1: *\xi_i: *a) \ (*a \in *A_a^+)$ is of the form:

(I) $e^{-*\rho(\log(*a))} \Phi_{\alpha}(*\xi_i:*a) C_{\alpha}(*\xi_i) \neq 0,$ or

(II) $e^{-*_{\theta}(\log(*a))} \{ \Phi_{\alpha}(*\xi_{i}:*a) C_{\alpha}(*\xi_{i}) + \Phi_{\alpha}(-*\nu_{\alpha}:*a) C_{\alpha}(-*\nu_{\alpha})|_{*\nu_{\alpha}=*\xi_{i}} \}.$ In both cases $E(*P_{\alpha}:1:*\xi_{i}:m) \ (m \in M_{\alpha})$ is contained in $^{\circ}C(M_{\alpha}, \tau_{M_{\alpha}}).$

For simplicity we put $E_i = E(*P_a: 1: *\xi_i: \cdot)$ $(1 \le i \le l)$ and suppose that $E_i \ne 0$ for $1 \le i \le l'$ and zero for otherwise. Then applying the results in the case of real rank 1 (cf. [3]), we conclude the following

Theorem 4. Each E_i $(1 \le i \le l')$ is of the form (I) in Lemma 3 whose L^2 -norm is given by $||E_i||^2 = -\mu_{\alpha,i}^{-1}$, where

$$\mu_{\alpha,i} = 2\pi\sqrt{-1} \operatorname{Res}_{*\nu_{\alpha}=*\xi_{i}} \mu_{\alpha}(*\nu_{\alpha})$$

and each E_i $(l'+1 \le i \le l)$ is of the form (II). Moreover $\{\psi_{\alpha,i} = E_i(-\mu_{\alpha,i})^{1/2}; 1 \le i \le l'\}$

is an orthonormal basis for $^{\circ}C(M_{\alpha}, \tau_{M_{\alpha}})$.

Let f be in $C_c^{\infty}(G, \tau)$, where $C_c^{\infty}(G, \tau)$ is the set of all C^{∞} , τ -spherical functions on G with compact support. Then it is easy to see from the above results that $\hat{f}(\psi_{\alpha,i},\nu_{\alpha}) = (-\mu_{\alpha,i})^{1/2} \hat{f}(\nu_{\alpha} + *\xi_i)$ ($\nu_{\alpha} \in \mathcal{F}_{\alpha}, 1 \leq i \leq l'$). According to Theorem 1, we decompose f as $f = f_0 + f_1 + f_2$, where f_0 $\in {}^{\circ}\mathcal{C}(G, \tau), f_1 \in \mathcal{C}_{A_{\alpha}}(G, \tau)$ and $f_2 \in \mathcal{C}_A(G, \tau)$. Then using the inverse transform for f_1 and Lemma 5 in [4], we have the following

Corollary 5.

$$f_1(x)\!=\!rac{-1}{|W_a|}\sum\limits_{i=1}^{l'}\int_{\mathscr{F}_a}2\pi\sqrt{-1} \operatorname*{Res}_{*_{
u_a}=*\xi_i}\mu_a(
u_a\!+*
u_a)
onumber \ imes E(P\!:\!1\!:\!
u_a\!+*\!\xi_i\!:\!x)\widehat{f}(
u_a\!+*\!\xi_i)d
u_a.$$

4. Residue integrals. Let f be in $C_c^{\infty}(G, \tau)$ and put $f = f_0 + f_1 + f_2$ as before. Then by Theorem 1,

$$f_2(x) = rac{1}{|W|} \int_{\mathscr{F}} \mu(
u) E(P:1:
u:x) \widehat{f}(
u) d
u \qquad (x \in G).$$

Here we replace $E(P:1:\nu:a)$ $(a \in A^+)$ by its Harish-Chandra expansion : $E(P:1:\nu:a) = e^{-\rho(\log(a))} \sum_{v \in W^*} \Phi(s\nu:a)C(s;\nu) \qquad (\nu \in \mathcal{F}^c)$

and shift the integral line from \mathcal{F} to $\mathcal{F} + \sqrt{-1}\delta$, where $\delta \in \mathcal{F}^+$ such that $\mu(\nu)\Phi(\nu:a)C(1;\nu)$ is holomorphic on $\mathcal{F} + \sqrt{-1}(\delta + \mathcal{F}^+)$. Then using the same arguments in [4], we can obtain that

$$f_{2}(a) = \int_{\mathcal{H}+\sqrt{-1\delta}} e^{-\rho(\log(a))} \Phi(\nu:a) C(1;\nu)^{*-1} \hat{f}(\nu) d\nu \\ + \sum_{i=1}^{l'} \sum_{s \in W_{0}} \int_{\mathcal{H}} e^{-\rho(\log(a))} 2\pi \sqrt{-1} \operatorname{Res}_{*\nu_{\alpha} = *\xi_{i}} \mu(\nu_{\alpha} + *\nu_{\alpha}) \\ \times \Phi(s(\nu_{\alpha} + *\xi_{i}):a) C(1;s(\nu_{\alpha} + *\xi_{i})) \hat{f}(s(\nu_{\alpha} + *\xi_{i})) d\nu_{\alpha} \\ - \sum_{i=1}^{l'} \sum_{j=1}^{l''} 4\pi^{2} \operatorname{Res}_{\nu_{\alpha} = *\xi_{i}} \operatorname{Res}_{*\nu_{\alpha} = \xi_{ij}} e^{-\rho(\log(a))} \Phi(\nu_{\alpha} + *\nu_{\alpha}) C(1;\nu_{\alpha} + *\nu_{\alpha})^{*-1} \hat{f}(\nu_{\alpha} + *\nu_{\alpha})$$

where $W_0 = \{s \in W; s\alpha \in \Sigma^+\}$ and $\{(*\xi_i, \zeta_{ij}); 1 \le i \le l', 1 \le j \le l''\}$ is the set of intersections of singular hyperplanes of $\Phi(\nu: a)C(1; \nu)^{*-1}$ which arise when we shift the integral line. For simplicity we denote the first two integrals by f_2^c and $I_{j,i}^s$ respectively and the last term by RR_j . Then

$$f_2 = f_2^c + \sum_{i=1}^{l} \sum_{s \in W_0} I_{f,i}^s - RR_f.$$

No. 6]

Obviously, using the same arguments in the classical Paley-Wiener theorem on an Euclidean space, we see that f_2^c belongs to $C_c^{\infty}(G, \tau)$.

For each $i, j (1 \le j \le l'', 1 \le i \le l')$ let us suppose that $\Phi(\nu: a)C(1; \nu)^{*-1}$ has a pole of m_{ij} -th order at $\nu = \nu_{\alpha} + \zeta_{ij}$ ($\nu_{\alpha} \in \mathcal{F}_{\alpha}$). Here we put

$$S = \{ D^{(0,m)}(*\xi_i, \zeta_{ij}) E(P:1:\nu_{\alpha} + *\nu_{\alpha}:\cdot); 0 \le m \le m_{ij} - 1, \\ 1 \le i \le l', 1 \le j \le l'' \},$$

where

$$D^{(n,m)}(\xi,\zeta) = \frac{\partial^n}{\partial \nu^n_{\alpha}} \bigg|_{\nu_{\alpha}=\xi} \frac{\partial^m}{\partial^* \nu^m_{\alpha}} \bigg|_{*\nu_{\alpha}=\zeta}.$$

Let $\{E_{(p)}=D^{(0,m_{(p)})}(*\xi_{(p)},\zeta_{(p)})E(P:1:\cdot:x); 1\leq p\leq \gamma\}$ be a maximal linearly independent subset of S. Then each element of S can be written as a linear combination of $E_{(p)}$ $(1\leq p\leq \gamma)$, that is,

$$D^{(0,m)}(^{*}\xi_{i},\zeta_{ij})E(P:1:\cdot:x) = \sum_{p=1}^{r} A_{m,i,j,p}E_{(p)}(x) \qquad (x \in G, A_{m,i,j,p} \in C).$$

As in [3], we choose $h_{(p)}$ $(1 \le p \le \gamma) \in C_c^{\infty}(G, \tau)$ such that $(h_{(p)}, E_{(q)}) = \delta_{pq} (1 \le p, q \le \gamma)$ and put $A_{p,k} = (h_p, e_k) (1 \le p \le \gamma, 1 \le k \le n')$.

Lemma 6. For f in $C_c^{\infty}(G, \tau)$ we put $F = f - \sum_{p=1}^{\tau} (f, E_{(p)}) h_{(p)}$. Then $RR_F = 0$.

This lemma is proved by the same way in [3, I, cf. (4.16)].

In what follows we shall prove that $F_0=0$. Here we note that each $E(P_{\alpha}:\psi_{\alpha,i}:\nu_{\alpha}:x)=(-\mu_{\alpha,i})^{1/2}E(P:1:\nu_{\alpha}+*\xi_i:x)$ $(1\leq i\leq l')$ satisfies the weak inequality on G for $\nu_{\alpha}\in\mathcal{F}_{\alpha}$. Then using the Harish-Chandra expansion of the right hand side, we can deduce the first relation in the following proposition and using the definition of $\Phi(\nu:a)$ directly the second one.

Proposition 7. (i)

$$\sum_{i=1}^{l'} \sum_{s \in W_0} I_{F,i}^s = \frac{1}{|W_{\alpha}|} \sum_{i=1}^{l'} \int_{\mathcal{F}_{\alpha}} 2\pi \sqrt{-1} \operatorname{Res}_{*\nu_{\alpha} = *\xi_i} \mu(\nu_{\alpha} + *\nu_{\alpha})$$

$$\times E(P:1:\nu_{\alpha} + *\xi_i:\cdot) \hat{F}(\nu_{\alpha} + *\xi_i) d\nu_{\alpha} - \sum_{i=1}^{l'} \sum_{s \in W_0} J_{F,i}^s,$$

where $W'_0 = W - W_0$ and for $s \in W'_0$,

$$J_{F,i}^{s}(a) = \int_{\mathcal{F}_{\alpha}} 2\pi \sqrt{-1} \Big\{ \underset{\nu_{\alpha}=*\xi_{i}}{\operatorname{Res}} \mu(\nu_{\alpha}+*\nu_{\alpha}) \Big\} \Phi(s(\nu_{\alpha}+*\nu_{\alpha}):a) \\ \times C(s; \nu_{\alpha}+*\nu_{\alpha})|_{*\nu_{\alpha}=*\xi_{i}} \hat{F}(\nu_{\alpha}+*\xi_{i})d\nu_{\alpha} \qquad (a \in A^{+}).$$

(ii) For each $s \in W'_0$ and $1 \le i \le l'$ there exists a meromorphic function P^s_i on \mathcal{F}_a such that

 $J^{s}_{F,i}(a) = \exp \left\{-\left(\rho + \sqrt{-1}s^{*}\xi_{i}\right)\left(\log (a)\right)\right\} H^{s}_{F,i}(a) \qquad (a \in A^{+}),$ where

$$H^{s}_{F,i}(a) = \frac{1}{|W_{\alpha}|} \int_{\mathcal{F}_{\alpha}} 2\pi \sqrt{-1} \left\{ \operatorname{Res}_{*\nu_{\alpha} = *\xi_{i}} \mu(\nu_{\alpha} + *\nu_{\alpha}) \right\} P^{s}_{i}(\nu_{\alpha}) \hat{F}(\nu_{\alpha} + *\xi_{i})$$

 $\times \exp \left\{\sqrt{-1}s\nu_{\alpha}\left(\log\left(a\right)\right)\right\}d\nu_{\alpha}.$

Then by Corollary 5 and the above relation (i), we see that

An Analogue of Paley-Wiener Theorem

 $(*) \qquad \qquad \sum_{i=1}^{l'} \sum_{s \in W_0} I_{F,i}^s = -F_1 - \sum_{i=1}^{l'} \sum_{s \in W_0} J_{F,i}^s$

and thus,

$$F = F_0 + F_2^c - \sum_{i=1}^{l'} \sum_{s \in W_0} J_{F,i}^s$$
.

Moreover we obtain the following lemma which was used in [4] without a proof.

Lemma 8. $J_{F,i}^s = 0$ for all $s \in W'_0$ and $1 \le i \le l'$.

To prove this lemma it is enough to prove that $\Phi(s(\nu_a + *\nu_a): a)$ $(a \in A^+, \nu_a \in \mathcal{F}_a)$ is holomorphic at $*\nu_a = *\xi_i$ for all $s \in W'_0$ and $1 \le i \le l'$. This fact is obtained from the definitions of $\Phi(\nu: a)$ and $\Phi_a(*\nu_a: *a)$ for $s \in W'_0$ such that $s\alpha = -\varepsilon_1$ or $-\varepsilon_2$, and from the relation (*), Proposition 7 (ii) and the following proposition for $s \in W'_0$ such that $s\alpha = -\alpha$.

Proposition 9. There exists a function g in $C_c^{\infty}(G, \tau)$ such that (1) $RR_g=0$, (2) $g_0=0$, (3) $\hat{g}(\nu_a+\xi_i)\neq 0$ for all $1\leq i\leq l'$, (4) when $P_i^s\neq 0$ for $s\in W'_0$ and $1\leq i\leq l'$, then $J_{g,i}^s\neq 0$.

Therefore using Lemma 8 and the relation (*), we see that $F = F_0 + F_2^c$. Since $F - F_2^c$ has compact support and F_0 is real analytic on G, it is easy to see that $F = F_2^c$ and $F_0 = 0$. In particular, since f is an arbitrary function in $C_e^{\infty}(G, \tau)$, the following proposition is obtained.

Proposition 10.

$$e_k = \sum_{p=1}^r A_{p,k} E_{(p)}$$
 (1 $\leq k \leq n'$).

5. An analogue of Paley-Wiener theorem. We shall define the subspace of $\hat{\mathcal{C}}(G,\tau)$ which will be the set of Fourier transforms of $C_c^{\infty}(G,\tau)$. Let \mathcal{H} be the set of all $\boldsymbol{b}=(b_k)_{k=1}^{n'}\oplus(\beta_i(\nu_{\alpha}))_{i=1}^{\ell'}\oplus\beta(\nu)$ in $\hat{\mathcal{C}}(G,\tau)$ satisfying the following conditions;

(C1) each β_i $(1 \le i \le l')$ and β can be extended to entire holomorphic functions, which are exponential type, on \mathcal{P}^c_{α} and \mathcal{P}^c respectively,

- (C2) $\beta_i(\nu_{\alpha}) = \beta(\nu_{\alpha} + {}^*\xi_i)$ $(1 \le i \le l', \nu_{\alpha} \in \mathcal{F}_{\alpha}^c),$
- (C3) $b_k = \sum_{p=1}^r A_{p,k} D^{(0,m)}(*\xi_{(p)}, \zeta_{(p)})\beta$ (1 $\leq k \leq n'$),

(C4)
$$D^{(0,m)}(\xi_i, \zeta_{ij}) \beta = \sum_{p=1}^{i} A_{m,i,j,p} D^{(0,m_{(p)})}(\xi_{(p)}, \zeta_{(p)}) \beta$$

(1 $\leq i \leq l', 1 \leq j \leq l''$).

Then our main result can be stated as follows.

Theorem 2. The Fourier transform sets up a bijection between $C^{\infty}_{\epsilon}(G, \tau)$ and \mathcal{H} .

(Pr) As has been seen in § 4, it is easy to see that the mapping: $f \mapsto E(f)$ is injective one of $C_c^{\infty}(G, \tau)$ to \mathcal{H} . Therefore it remains to prove the surjectivity. Let $\boldsymbol{b} = (b_k)_{k=1}^{n'} \oplus (\beta_i)_{i=1}^{l'} \oplus \beta$ be in \mathcal{H} and put $f = E^{-1}(\boldsymbol{b})$. Our purpose is to prove that f is contained in $C_c^{\infty}(G, \tau)$. Here we define F by $F = f - \sum_{p=1}^{r} D^{(0,m(p))}(*\xi_{(p)}, \zeta_{(p)})\beta h_{(p)}$. Obviously, E(F) belongs to \mathcal{H} and thus satisfies the above conditions: (C1)-(C4).

No. 6]

Then, applying the same arguments as before, we see that $F = F_2^c$, particularly, F has compact support. Therefore f has also compact support on G. Q.E.D.

References

- [1] Harish-Chandra: Harmonic analysis on real reductive groups I. J. Funct. Anal., 19, 104-204 (1975).
- [2] ——: ditto. II. Ann. of Math., 104, 117-201 (1976).
- [3] T. Kawazoe: An analogue of Paley-Wiener theorem on rank 1 semisimple Lie groups I, II. Tokyo J. Math., 2, 397-407 (1979); 2, 409-421 (1979).
- [4] —: An analogue of Paley-Wiener theorem on SU(2,2). ibid., 3, 219– 248 (1980).
- [5] G. Warner: Harmonic Analysis on Semi-Simple Lie Groups II. Springer-Verlag (1972).