70. An Analogue of Paley-Wiener Theorem on a Real Rank 2 Semisimple Lie Group

The Case of 1 Dimensional τ-Sherical Functions

By Takeshi Kawazoe
Department of Mathematics, Faculty of Science and Technology, Keio University
(Communicated by Kôsaku Yosida, M. J. A., June 11, 1981)

In the previous paper [4] we obtained an analogue of Paley-Wiener theorem on $S U(2,2)$. In this article we shall give more precise results about this theorem, particularly, replace the condition (C1) in [4] by explicit conditions (cf. (C2)-(C4) in §5).

1. Notation and assumptions. Let G be a connected semisimple Lie group with finite center and $G=K A N$ an Iwasawa decomposition for G. Let M be the centralizer of A in K and put $P=M A N$. Then P is a minimal parabolic subgroup of G. We denote the Lie algebras by small German letters. Let Σ denote the set of all roots for the pair ($\mathfrak{g}, \mathfrak{a}$) and W the corresponding Weyl group. Let Σ^{+}denote the set of all positive roots in Σ and \mathfrak{a}^{+}the corresponding positive Weyl chamber in \mathfrak{a}. Put $\rho=(1 / 2) \sum_{\beta \in \Sigma+} \beta$. For simplicity we denote the dual space of \mathfrak{a} by \mathscr{F} and its complexification by \mathscr{F}^{c}. Put $\mathscr{F}^{+}=\{\lambda \in \mathscr{F}$; $\langle\lambda, \alpha\rangle>0$ for all $\left.\alpha \in \Sigma^{+}\right\}$and $A^{+}=\exp \mathfrak{a}^{+}$.

For any root α in Σ let α_{α} denote the hyperplane of $\alpha=0$ in \mathfrak{a} and put $A_{\alpha}=\exp \mathfrak{a}_{\alpha}$. Let L_{α} denote the centralizer of A_{α} in G. Then it is easy to see that $L_{\alpha}=M_{\alpha} A_{\alpha}$, where $M_{\alpha}=\bigcap_{\chi \in X\left(L_{\alpha}\right)} \operatorname{Ker}|\chi|\left(X\left(L_{\alpha}\right)\right.$ is the group of all continuous homomorphisms of L_{α} into the multiplicative group of real numbers). Then we can define the parabolic subgroup $P_{\alpha}=M_{\alpha} A_{\alpha} N_{\alpha}$ such that $N_{\alpha} \subset N$. Put ${ }^{*} P_{\alpha}=P \cap M_{\alpha}$ and ${ }^{*} A_{\alpha}=A \cap M_{\alpha}$, ${ }^{*} N_{\alpha}=N \cap M_{\alpha}$. Then it is easy to see that ${ }^{*} P_{\alpha}=M^{*} A_{\alpha}{ }^{*} N_{\alpha}$ is a minimal parabolic subgroup of M_{α} and $\operatorname{dim} * A_{\alpha}=1$. For this pair $\left(M_{\alpha}, * A_{\alpha}\right)$ we define ${ }^{*} \rho,{ }^{*} \mathscr{F}_{\alpha}, * \mathscr{F}_{\alpha}^{c}, * \mathscr{F}_{\alpha}^{+}$and ${ }^{*} A_{\alpha}^{+}$by the same way, where $\lambda\left({ }^{*} a\right)>0$ for ${ }^{*} a \in{ }^{*} A_{\alpha}^{+}$and $\lambda \in \mathscr{F}^{+}$.

Let $\tau=\left(\tau_{1}, \tau_{2}\right)$ be a unitary double representation of K on a finite dimensional Hilbert space V. Let $\mathcal{C}(G, \tau)$ denote the τ-spherical Schwartz space on G and ${ }^{\circ} \mathcal{C}(G, \tau)$ the closed subspace of $\mathcal{C}(G, \tau)$ consisting of all cusp forms. For any parabolic subgroup $Q=M_{Q} A_{Q} N_{Q}$ of G let $\mathcal{C}_{A_{Q}}(G, \tau)$ denote the closed subspace of $\mathcal{C}(G, \tau)$ consisting of all wave packets corresponding to Q (cf. [2, § 26]). Let τ_{M} and $\tau_{M_{\alpha}}\left(\alpha \in \Sigma^{+}\right)$ denote the restrictions of τ to M and $M_{\alpha} \cap K$ respectively. Then for
the τ_{M} (resp. $\tau_{M_{\alpha}}$)-spherical Schwartz space $\mathcal{C}\left(M, \tau_{M}\right)$ (resp. $\left.\mathcal{C}\left(M_{\alpha}, \tau_{M_{\alpha}}\right)\right)$ we define the above closed subspaces by the same way.

In this article we accept the following assumptions; (A1) $\operatorname{dim} A$ $=2$, (A2) $\operatorname{dim} V=1$, (A3) $\mathcal{C}(G, \tau)={ }^{\circ} \mathcal{C}(G, \tau) \oplus \mathcal{C}_{A_{\alpha}}(G, \tau) \oplus \mathcal{C}_{A}(G, \tau)$ for α $\in C L\left(\mathscr{F}^{+}\right)$, (A4) $\{s \alpha ; s \in W\} \cap \Sigma^{+} \subset\left\{\alpha, \varepsilon_{1}, \varepsilon_{2}\right\}$, where $\left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ is the fundamental system of positive roots. In these assumptions, (A2) is essential, for the operators: $\Phi(\nu: a)\left(a \in A^{+}\right)$and $C(s ; \nu)(s \in W)($ see $\S \S 3,4)$ are C-valued meromorphic functions of ν on \mathscr{F}^{c} and moreover $\Phi(\nu: a)$ is holomorphic on $\mathscr{F}+\sqrt{-1} C L\left(\mathscr{F}^{+}\right)$under (A2).
2. Fourier transform on $\mathcal{C}(\boldsymbol{G}, \boldsymbol{\tau})$. Let $e_{k}\left(1 \leq k \leq n^{\prime}\right)$ and $\psi_{\alpha, i}$ ($1 \leq i \leq l^{\prime}$) (cf. § 3, Theorem 4) denote orthonormal basis for $L_{G}={ }^{\circ} \mathcal{C}(G, \tau)$ and $L_{M_{\alpha}}={ }^{\circ} \mathcal{C}\left(M_{\alpha}, \tau_{M_{\alpha}}\right)$ respectively. Then for f in $\mathcal{C}(G, \tau)$ its Fourier transform $E(f)$ is defined as follows;

$$
E(f)=\left(\left(f, e_{k}\right)\right)_{k=1}^{n^{\prime}} \oplus\left(\hat{f}\left(\psi_{\alpha, i}, \nu_{\alpha}\right)\right)_{i=1}^{l^{\prime}} \oplus \hat{f}(\nu) \quad\left(\nu \in \mathscr{F}_{\alpha} \text { and } \nu \in \mathscr{F}\right),
$$

where $\hat{f}\left(\psi_{\alpha, i}, \nu_{\alpha}\right)=\left(f, E\left(P: \psi_{\alpha, i}: \nu_{\alpha}: \cdot\right)\right)$ and $\hat{f}(\nu)=(f, E(P: 1: \nu: \cdot))$ (see [3]). Obviously, $E(f)$ is contained in $C^{n^{\prime}} \oplus \mathcal{C}\left(\mathscr{F}_{\alpha}\right)^{l^{\prime}} \oplus \mathcal{C}(\mathscr{F})$, where $\mathcal{C}\left(\mathscr{F}_{\alpha}\right)$ (resp. $\mathcal{C}(\mathscr{F})$) is the usual Schwartz space on \mathscr{F}_{α} (resp. \mathscr{F}). Here we define the closed subspace $\mathcal{C}\left(\mathscr{F}_{\alpha}\right)_{*}^{l^{\prime}}$ of $\mathcal{C}\left(\mathscr{F}_{\alpha}\right)^{l^{\prime}}$ (resp. $\mathcal{C}(\mathscr{F})_{*}$ of $\mathcal{C}(\mathscr{F})$) as in [3]. Then we obtained the following theorem in [3].

Theorem 1. The Fourier transform sets up a homeomorphism
 The inverse transform is given by

$$
\begin{aligned}
f(x)= & \sum_{k=1}^{n^{\prime}}\left(f, e_{k}\right) e_{k}(x)+\sum_{i=1}^{l^{\prime}} \frac{1}{\left|W_{\alpha}\right|} \int_{\mathscr{F}_{\alpha}} \mu\left(\sigma_{i}, \nu_{\alpha}\right) E\left(P_{\alpha}: \psi_{\alpha, i}: \nu_{\alpha}: x\right) \hat{f}\left(\psi_{\alpha, i}, \nu_{\alpha}\right) d \nu_{\alpha} \\
& +\frac{1}{|W|} \int_{\mathscr{F}} \mu(\nu) E(P: 1: \nu: x) \hat{f}(\nu) d \nu \quad(x \in G)
\end{aligned}
$$

where W_{α} is the Weyl group for $\left(G, A_{\alpha}\right)$ and $\sigma_{i}\left(1 \leq i \leq l^{\prime}\right)$ is the discrete series for M_{α} such that $\psi_{\alpha, i}$ is the matrix coefficient of σ_{i}.

Before stating the main result, we have to obtain some information for M_{α} (see §3) and calculate residue integrals (see $\S 4$).
3. Analysis on \boldsymbol{M}_{α}. Let us agree to write the Harish-Chandra expansion of the Eisenstein integral for $\left(M_{\alpha},{ }^{*} P_{\alpha}\right)$ as follows;
$E\left({ }^{*} P_{\alpha}: 1:{ }^{*} \nu_{\alpha}:{ }^{*} a\right)=e^{-* \rho(\log (* *))}\left\{\Phi_{\alpha}\left({ }^{*} \nu_{\alpha}: a\right) C_{\alpha}\left({ }^{*} \nu_{\alpha}\right)+\Phi_{\alpha}\left(-{ }^{*} \nu_{\alpha}:{ }^{*} a\right) C_{\alpha}\left(-{ }^{*} \nu_{\alpha}\right)\right\}$ for ${ }^{*} a \in{ }^{*} A_{\alpha}^{+}$and ${ }^{*} \nu_{\alpha} \in * \mathscr{F _ { \alpha } ^ { c }}$. \quad Let $\left\{\xi_{i} ; 1 \leq i \leq l\right\}$ denote the set of all poles of $\Phi_{\alpha}\left(\nu_{\alpha}:{ }^{*} a\right) C_{\alpha}\left(\nu_{\alpha}\right)^{*-1}$ on ${ }^{*} \mathscr{F}_{\alpha}+\sqrt{-1} C L\left(* \mathscr{F}_{\alpha}^{+}\right)$. Then it is easy to see that $* \xi_{i} \in \sqrt{-1} * \mathscr{F}_{\alpha}^{+}$. Here we note that $\mu_{\alpha}\left({ }_{\nu} \nu_{\alpha}\right)$, the μ-function for ($M_{\alpha},{ }^{*} P_{\alpha}$), has at most simple pole or zero at $\nu_{\nu_{\alpha}}={ }^{*} \xi_{i} \neq 0$ and $\Phi_{\alpha}\left({ }^{*} \nu_{\alpha}:{ }^{*} a\right)$ is holomorphic on ${ }^{*} \mathscr{F}_{\alpha}+\sqrt{-1} C L\left(* \mathcal{F}_{\alpha}^{+}\right)$. Therefore using the relation: $\mu_{\alpha}\left({ }^{*} \nu_{\alpha}\right) C_{\alpha}\left(\nu_{\alpha}\right) C_{\alpha}\left({ }^{*} \nu_{\alpha}\right)=1\left({ }^{*} \nu_{\alpha} \in * \mathscr{F}_{\alpha}^{c}\right)$, we can obtain the following

Lemma 3. Each ${ }^{*} \xi_{i}(1 \leq i \leq l)$ is a simple pole of $\mu_{\alpha}\left(\nu_{\alpha}\right)$ and $E\left({ }^{*} P_{\alpha}: 1:{ }^{*} \xi_{i}:{ }^{*} a\right)\left({ }^{*} a \in{ }^{*} A_{\alpha}^{+}\right)$is of the form:
(I) $e^{-*_{\rho}\left(\log \left({ }^{*} \alpha\right)\right)} \Phi_{\alpha}\left({ }^{*} \xi_{i}:{ }^{*} a\right) C_{\alpha}\left({ }^{*} \xi_{i}\right) \neq 0$, or
(II) $e^{-*_{\rho}\left(\log \left({ }^{*}\right)\right)}\left\{\Phi_{\alpha}\left({ }^{*} \xi_{i}:{ }^{*} a\right) C_{\alpha}\left({ }^{*} \xi_{i}\right)+\left.\Phi_{\alpha}\left(-{ }^{*} \nu_{\alpha}:{ }^{*} a\right) C_{\alpha}\left(-{ }^{*} \nu_{\alpha}\right)\right|_{*_{\nu_{\alpha}}=*_{i}}\right\}$. In both cases $E\left({ }^{*} P_{\alpha}: 1:{ }^{*} \xi_{i}: m\right)\left(m \in M_{\alpha}\right)$ is contained in ${ }^{\circ} \mathcal{C}\left(M_{\alpha}, \tau_{M_{\alpha}}\right)$.

For simplicity we put $E_{i}=E\left({ }^{*} P_{\alpha}: 1:{ }^{*} \xi_{i}: \cdot\right)(1 \leq i \leq l)$ and suppose that $E_{i} \neq 0$ for $1 \leq i \leq l^{\prime}$ and zero for otherwise. Then applying the results in the case of real rank 1 (cf. [3]), we conclude the following

Theorem 4. Each $E_{i}\left(1 \leq i \leq l^{\prime}\right)$ is of the form (I) in Lemma 3 whose L^{2}-norm is given by $\left\|E_{i}\right\|^{2}=-\mu_{\alpha, i}^{-1}$, where

$$
\mu_{\alpha, i}=2 \pi \sqrt{-1}{\underset{*}{*_{\alpha} \alpha=* \xi_{i}}}_{\operatorname{Res}} \mu_{\alpha}\left(*_{\nu_{\alpha}}\right)
$$

and each $E_{i}\left(l^{\prime}+1 \leq i \leq l\right)$ is of the form (II). Moreover

$$
\left\{\psi_{\alpha, i}=E_{i}\left(-\mu_{\alpha, i}\right)^{1 / 2} ; 1 \leq i \leq l^{\prime}\right\}
$$

is an orthonormal basis for ${ }^{\circ} \mathrm{C}\left(M_{\alpha}, \tau_{M_{\alpha}}\right)$.
Let f be in $C_{c}^{\infty}(G, \tau)$, where $C_{c}^{\infty}(G, \tau)$ is the set of all C^{∞}, τ-spherical functions on G with compact support. Then it is easy to see from the above results that $\hat{f}\left(\psi_{\alpha, i}, \nu_{\alpha}\right)=\left(-\mu_{\alpha, i}\right)^{1 / 2} \hat{f}\left(\nu_{\alpha}+{ }^{*} \xi_{i}\right) \quad\left(\nu_{\alpha} \in \mathscr{F}_{\alpha}, 1 \leq i \leq l^{\prime}\right)$. According to Theorem 1, we decompose f as $f=f_{0}+f_{1}+f_{2}$, where f_{0} $\in{ }^{\circ} \mathcal{C}(G, \tau), f_{1} \in \mathcal{C}_{A_{\alpha}}(G, \tau)$ and $f_{2} \in \mathcal{C}_{A}(G, \tau)$. Then using the inverse transform for f_{1} and Lemma 5 in [4], we have the following

Corollary 5.

$$
\begin{aligned}
f_{1}(x)= & \frac{-1}{\left|W_{\alpha}\right|} \sum_{i=1}^{l^{\prime}} \int_{\mathscr{F}_{\alpha}} 2 \pi \sqrt{-1} \operatorname{Res}_{*_{\nu_{\alpha}}=\xi_{i}} \mu_{\alpha}\left(\nu_{\alpha}+\nu_{\alpha}\right) \\
& \times E\left(P: 1: \nu_{\alpha}+\xi_{i}: x\right) \hat{f}\left(\nu_{\alpha}+\xi_{i}\right) d \nu_{\alpha} .
\end{aligned}
$$

4. Residue integrals. Let f be in $C_{c}^{\infty}(G, \tau)$ and put $f=f_{0}+f_{1}$ $+f_{2}$ as before. Then by Theorem 1 ,

$$
f_{2}(x)=\frac{1}{|W|} \int_{\mathscr{I}} \mu(\nu) E(P: 1: \nu: x) \hat{f}(\nu) d \nu \quad(x \in G)
$$

Here we replace $E(P: 1: \nu: a)\left(a \in A^{+}\right)$by its Harish-Chandra expansion:

$$
E(P: 1: \nu: a)=e^{-\rho(\log (a))} \sum_{s \in W} \Phi(s \nu: a) C(s ; \nu) \quad\left(\nu \in \mathscr{F}^{c}\right)
$$

and shift the integral line from \mathscr{F} to $\mathscr{F}+\sqrt{-1} \delta$, where $\delta \in \mathscr{F}^{+}$such that $\mu(\nu) \Phi(\nu: a) C(1 ; \nu)$ is holomorphic on $\mathscr{F}+\sqrt{-1}\left(\delta+\mathscr{F}^{+}\right)$. Then using the same arguments in [4], we can obtain that

$$
\begin{aligned}
& f_{2}(a)=\int_{\mathscr{F}_{+}+\sqrt{-10}} e^{-\rho(\log (a))} \Phi(\nu: a) C(1 ; \nu)^{*-1} \hat{f}(\nu) d \nu \\
& +\sum_{i=1}^{l^{\prime}} \sum_{s \in W_{0}} \int_{\mathscr{F}} e^{-\rho(\log (\alpha))} 2 \pi \sqrt{-1} \operatorname{Res}_{*_{\nu \alpha}=*_{s i} i} \mu\left(\nu_{\alpha}+{ }^{*} \nu_{\alpha}\right) \\
& \times \Phi\left(s\left(\nu_{\alpha}+\xi_{i}\right): a\right) C\left(1 ; s\left(\nu_{\alpha}+\xi_{i}\right)\right) \hat{f}\left(s\left(\nu_{\alpha}+\xi_{i}\right)\right) d \nu_{\alpha} \\
& -\sum_{i=1}^{l^{\prime}} \sum_{j=1}^{l^{\prime \prime}} 4 \pi^{2} \operatorname{Res}_{\nu_{\alpha}=\psi_{\xi_{i}}} \operatorname{Res}_{\nu_{\nu \alpha}=\zeta_{i j}} e^{-\rho(\log (a))} \Phi\left(\nu_{\alpha}+{ }^{*} \nu_{\alpha}\right) C\left(1 ; \nu_{\alpha}+{ }_{\nu_{\alpha}}\right)^{*-1} \hat{f}\left(\nu_{\alpha}+{ }_{\nu_{\alpha}}\right),
\end{aligned}
$$

where $W_{0}=\left\{s \in W ; s \alpha \in \Sigma^{+}\right\}$and $\left.\left\{*^{*} \xi_{i}, \zeta_{i j}\right) ; 1 \leq i \leq l^{\prime}, 1 \leq j \leq l^{\prime \prime}\right\}$ is the set of intersections of singular hyperplanes of $\Phi(\nu: a) C(1 ; \nu)^{*-1}$ which arise when we shift the integral line. For simplicity we denote the first two integrals by f_{2}^{c} and $I_{f, i}^{s}$ respectively and the last term by $R R_{f}$. Then

$$
f_{2}=f_{2}^{c}+\sum_{i=1}^{l^{\prime}} \sum_{s \in W_{0}} I_{f, i}^{s}-R R_{f}
$$

Obviously, using the same arguments in the classical Paley-Wiener theorem on an Euclidean space, we see that f_{2}^{c} belongs to $C_{c}^{\infty}(G, \tau)$.

For each $i, j\left(1<j \leq l^{\prime \prime}, 1 \leq i \leq l^{\prime}\right)$ let us suppose that $\Phi(\nu: \alpha) C(1 ; \nu)^{*-1}$ has a pole of $m_{i j}$-th order at $\nu=\nu_{\alpha}+\zeta_{i j}\left(\nu_{\alpha} \in \mathscr{F}_{\alpha}\right)$. Here we put

$$
\begin{aligned}
S=\left\{D^{(0, m)}\left({ }^{*} \xi_{i}, \zeta_{i j}\right) E\left(P: 1: \nu_{\alpha}+{ }^{*} \nu_{\alpha}: \cdot\right) ;\right. & 0 \leq m \leq m_{i j}-1, \\
& \left.1 \leq i \leq l^{\prime}, 1 \leq j \leq l^{\prime \prime}\right\},
\end{aligned}
$$

where

$$
D^{(n, m)}(\xi, \zeta)=\left.\left.\frac{\partial^{n}}{\partial \nu_{\alpha}^{n}}\right|_{\nu_{\alpha}=\xi} \frac{\partial^{m}}{\partial^{*} \nu_{\alpha}^{m}}\right|_{*_{\nu}=\zeta} .
$$

Let $\left.\left\{E_{(p)}=D^{\left(0, m_{(p)}\right)}{ }^{*} \xi_{(p)}, \zeta_{(p)}\right) E(P: 1: \cdot x) ; 1 \leq p \leq \gamma\right\}$ be a maximal linearly independent subset of S. Then each element of S can be written as a linear combination of $E_{(p)}(1 \leq p \leq \gamma)$, that is,

$$
D^{(0, m)}\left(* \xi_{i}, \zeta_{i j}\right) E(P: 1: \cdot: x)=\sum_{p=1}^{r} A_{m, i, j, p} E_{(p)}(x) \quad\left(x \in G, A_{m, i, j, p} \in C\right)
$$

As in [3], we choose $h_{(p)}(1 \leq p \leq \gamma) \in C_{c}^{\infty}(G, \tau)$ such that $\left(h_{(p)}, E_{(q)}\right)$ $=\delta_{p q}(1 \leq p, q \leq \gamma)$ and put $A_{p, k}=\left(h_{p}, e_{k}\right)\left(1 \leq p \leq \gamma, 1 \leq k \leq n^{\prime}\right)$.

Lemma 6. For f in $C_{c}^{\infty}(G, \tau)$ we put $F=f-\sum_{p=1}^{r}\left(f, E_{(p)}\right) h_{(p)}$. Then $R R_{F}=0$.

This lemma is proved by the same way in [3, I, cf. (4.16)].
In what follows we shall prove that $F_{0}=0$. Here we note that each $E\left(P_{\alpha}: \psi_{\alpha, i}: \nu_{\alpha}: x\right)=\left(-\mu_{\alpha, i}\right)^{1 / 2} E\left(P: 1: \nu_{\alpha}+{ }^{*} \xi_{i}: x\right)\left(1 \leq i \leq l^{\prime}\right)$ satisfies the weak inequality on G for $\nu_{\alpha} \in \mathscr{F}_{\alpha}$. Then using the Harish-Chandra expansion of the right hand side, we can deduce the first relation in the following proposition and using the definition of $\Phi(\nu: a)$ directly the second one.

Proposition 7. (i)

$$
\begin{aligned}
\sum_{i=1}^{l^{\prime}} \sum_{s \in W_{0}} I_{F, i}^{s}= & \frac{1}{\left|W_{\alpha}\right|} \sum_{i=1}^{l^{\prime}} \int_{\mathscr{F}_{\alpha}} 2 \pi \sqrt{-1} \operatorname{Res}_{*_{\nu}=\xi_{i}} \mu\left(\nu_{\alpha}+{ }^{*} \nu_{\alpha}\right) \\
& \times E\left(P: 1: \nu_{\alpha}+{ }^{*} \xi_{i}: \cdot\right) \hat{F}\left(\nu_{\alpha}+{ }^{*} \xi_{i}\right) d \nu_{\alpha}-\sum_{i=1}^{l^{\prime}} \sum_{s \in W_{0}^{\prime}} J_{F, i}^{s},
\end{aligned}
$$

where $W_{0}^{\prime}=W-W_{0}$ and for $s \in W_{0}^{\prime}$,

$$
\begin{aligned}
& J_{F, i}^{s}(a)=\int_{\mathscr{F}_{\alpha}} 2 \pi \sqrt{-1}\left\{\operatorname{Res}_{*_{\nu_{\alpha}=*_{i} i}} \mu\left(\nu_{\alpha}+*_{\nu_{\alpha}}\right)\right\} \Phi\left(s\left(\nu_{\alpha}+\nu_{\alpha}\right): a\right) \\
& \times\left. C\left(s ; \nu_{\alpha}+{ }^{*} \nu_{\alpha}\right)\right|_{*_{\alpha}=*_{i} i} \hat{F}\left(\nu_{\alpha}+\xi_{i}\right) d \nu_{\alpha} \quad\left(a \in A^{+}\right) .
\end{aligned}
$$

(ii) For each $s \in W_{0}^{\prime}$ and $1 \leq i \leq l^{\prime}$ there exists a meromorphic function P_{i}^{s} on \mathscr{F}_{α} such that

$$
J_{F, i}^{s}(a)=\exp \left\{-\left(\rho+\sqrt{-1} s^{*} \xi_{i}\right)(\log (a))\right\} H_{F, i}^{s}(a) \quad\left(a \in A^{+}\right)
$$

where

$$
\begin{aligned}
& H_{F, i}^{s}(a)=\frac{1}{\left|W_{\alpha}\right|} \int_{\mathscr{F}_{\alpha}} 2 \pi \sqrt{-1}\left\{\operatorname{Res}_{*_{\nu \alpha}=* \xi_{i}} \mu\left(\nu_{\alpha}+{ }^{*} \nu_{\alpha}\right)\right\} P_{i}^{s}\left(\nu_{\alpha}\right) \hat{F}\left(\nu_{\alpha}+{ }^{*} \xi_{i}\right) \\
& \times \exp \left\{\sqrt{-1} s \nu_{\alpha}(\log (\alpha))\right\} d \nu_{\alpha} .
\end{aligned}
$$

Then by Corollary 5 and the above relation (i), we see that
(*)

$$
\sum_{i=1}^{\nu} \sum_{s \in \mathcal{W}_{0}} I_{F, i}^{s}=-F_{1}-\sum_{i=1}^{\nu} \sum_{s \in \mathcal{W}_{0}} J_{P, i}^{s}
$$

and thus,

$$
F=F_{0}+F_{2}^{c}-\sum_{i=1}^{\nu} \sum_{s \in \mathcal{W}_{0}} J_{F, i}^{s} .
$$

Moreover we obtain the following lemma which was used in [4] without a proof.

Lemma 8. $\quad J_{F, i}^{s}=0$ for all $s \in W_{0}^{\prime}$ and $1 \leq i \leq l^{\prime}$.
To prove this lemma it is enough to prove that $\Phi\left(s\left(\nu_{\alpha}+^{*} \nu_{\alpha}\right): a\right)$ ($a \in A^{+}, \nu_{\alpha} \in \mathscr{F}_{\alpha}$) is holomorphic at ${ }^{*} \nu_{\alpha}={ }^{*} \xi_{i}$ for all $s \in W_{0}^{\prime}$ and $1 \leq i \leq l^{\prime}$. This fact is obtained from the definitions of $\Phi(\nu: a)$ and $\Phi_{\alpha}\left({ }^{*} \nu_{\alpha}:{ }^{*} a\right)$ for $s \in W_{0}^{\prime}$ such that $s \alpha=-\varepsilon_{1}$ or $-\varepsilon_{2}$, and from the relation (*), Proposition 7 (ii) and the following proposition for $s \in W_{0}^{\prime}$ such that $s \alpha=-\alpha$.

Proposition 9. There exists a function g in $C_{c}^{\infty}(G, \tau)$ such that (1) $R R_{g}=0$, (2) $g_{0}=0$, (3) $\hat{g}\left(\nu_{\alpha}+{ }^{*} \xi_{i}\right) \neq 0$ for all $1 \leq i \leq l^{\prime}$, (4) when $P_{i}^{s} \neq 0$ for $s \in W_{0}^{\prime}$ and $1 \leq i \leq l^{\prime}$, then $J_{g, i}^{s} \neq 0$.

Therefore using Lemma 8 and the relation (*), we see that $F=F_{0}$ $+F_{2}^{c}$. Since $F-F_{2}^{c}$ has compact support and F_{0} is real analytic on G, it is easy to see that $F=F_{2}^{c}$ and $F_{0}=0$. In particular, since f is an arbitrary function in $C_{c}^{\infty}(G, \tau)$, the following proposition is obtained.

Proposition 10.

$$
e_{k}=\sum_{p=1}^{r} A_{p, k} E_{(p)} \quad\left(1 \leq k \leq n^{\prime}\right)
$$

5. An analogue of Paley-Wiener theorem. We shall define the subspace of $\hat{C}(G, \tau)$ which will be the set of Fourier transforms of $C_{c}^{\infty}(G, \tau)$. Let \mathcal{H} be the set of all $\boldsymbol{b}=\left(b_{k}\right)_{k=1}^{n^{\prime}} \oplus\left(\beta_{i}\left(\nu_{\alpha}\right)\right)_{i=1}^{\nu^{\prime}} \oplus \beta(\nu)$ in $\hat{\mathcal{C}}(G, \tau)$ satisfying the following conditions;
(C1) each $\beta_{i}\left(1 \leq i \leq l^{\prime}\right)$ and β can be extended to entire holomorphic functions, which are exponential type, on \mathscr{F}_{α}^{c} and \mathscr{F}^{c} respectively,

$$
\begin{align*}
& \beta_{i}\left(\nu_{\alpha}\right)=\beta\left(\nu_{\alpha}+\xi_{i}\right) \quad\left(1 \leq i \leq l^{\prime}, \quad \nu_{\alpha} \in \mathscr{F}_{\alpha}^{c}\right), \tag{C2}\\
& b_{k}=\sum_{p=1}^{r} A_{p, k} D^{(0, m)}\left({ }^{*} \xi_{(p)}, \zeta_{(p)}\right) \beta \quad\left(1 \leq k \leq n^{\prime}\right), \\
& D^{(0, m)}\left({ }^{*} \xi_{i}, \zeta_{i j}\right) \beta=\sum_{p=1}^{r} A_{m, i, j, p} D^{(0, m(p)}\left({ }^{*} \xi_{(p)}, \zeta_{(p)}\right) \beta
\end{align*}
$$

$$
\left(1 \leq i \leq l^{\prime}, 1 \leq j \leq l^{\prime \prime}\right)
$$

Then our main result can be stated as follows.
Theorem 2. The Fourier transform sets up a bijection between $C_{c}^{\infty}(G, \tau)$ and \mathcal{H}.
($\boldsymbol{P r}$) As has been seen in $\S 4$, it is easy to see that the mapping: $f \mapsto E(f)$ is injective one of $C_{c}^{\infty}(G, \tau)$ to \mathcal{H}. Therefore it remains to prove the surjectivity. Let $\boldsymbol{b}=\left(b_{k}\right)_{k=1}^{n^{\prime}} \oplus\left(\beta_{i}\right)_{i=1}^{)^{\prime}} \oplus \beta$ be in \mathscr{G} and put $f=E^{-1}(\boldsymbol{b})$. Our purpose is to prove that f is contained in $C_{c}^{\infty}(G, \tau)$. Here we define F by $F=f-\sum_{p=1}^{r} D^{\left(0, m_{(p)}\right)}\left({ }^{*} \xi_{(p)}, \zeta_{(p)}\right) \beta h_{(p)}$. Obviously, $E(F)$ belongs to \mathscr{H} and thus satisfies the above conditions: (C1)-(C4).

Then, applying the same arguments as before, we see that $F=F_{2}^{c}$, particularly, F has compact support. Therefore f has also compact support on G.
Q.E.D.

References

[1] Harish-Chandra: Harmonic analysis on real reductive groups I. J. Funct. Anal., 19, 104-204 (1975).
[2] -: ditto. II. Ann. of Math., 104, 117-201 (1976).
[3] T. Kawazoe: An analogue of Paley-Wiener theorem on rank 1 semisimple Lie groups I, II. Tokyo J. Math., 2, 397-407 (1979) ; 2, 409-421 (1979).
[4] -_: An analogue of Paley-Wiener theorem on $S U(2,2)$. ibid., 3, 219248 (1980).
[5] G. Warner: Harmonic Analysis on Semi-Simple Lie Groups II. SpringerVerlag (1972).

