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In the previous paper [4] we obtained an analogue o Paley-Wiener
theorem on SU(2, 2). In this article we shall give more precise results
about this theorem, particularly, replace the condition (C1) in [4] by
explicit conditions (c. (C2)-(C4) in 5).

1. Notation and assumptions. Let G be a connected semisimple
Lie group with finite center and G=KAN an Iwasawa decomposition
or G. Let M be the centralizer of A in K and put P--MAN. Then
P is a minimal parabolic subgroup of G. We denote the Lie algebras
by small German letters. Let 2: denote the set o2 all roots or the
pair (, a) and W the corresponding Weyl group. Let 2: denote the
set o all positive roots in 2: and a+ the corresponding positive Weyl
chamber in . Put p=(1/2),,+ ft. For simplicity we denote the
dual space o a by and its complexification by . Put /={ e;
(, }0 or all e X +} and A =exp +.

For any root a in v let a denote the hyperplane o2 a=0 in a and
put A=exp a. Let L denote the centralizer o A in G. Then it is
easy to see that L=MA, where M=ex()KerIx[ (X(L) is the
group o all continuous homomorphisms o L into the rnultiplicative
group o real numbers). Then we can define the parabolic subgroup
P--MAN such that NcN. Put *P=P M and *A A M,
*N=NM. Then it is easy to see that *P=M*A*N is a minimal
parabolic subgroup o2 M and dim *A= 1. For this pair (M, *A)we

o, and * /define *p, *, * * / A by the same way, where (*a)0 for
$*ae A ande
Let v--(vl, v2)be a unitary double representation of K on a finite

dimensional Hilbert space V. Let C(G,r) denote the r-spherical
Schwartz space on G and C(G, r) the closed subspace of C(G, r) con-
sisting of all cusp forms. For any parabolic subgroup Q--MANq of
G let C.(G, r) denote the closed subspace of C(G, r) consisting of all
wave packets corresponding to Q (cf. [2, 26]). Let r and r(a e 2: +)
denote the restrictions of r to M and MK respectively. Then for
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the r (resp. r.)-spherical Schwartz space C(M, r) (resp. C(M., r.))
we define the above closed subspaces by the same way.

In this article we accept the ollowing assumptions; (A1) dim A
-2, (A2) dim V-1, (A3) C(G, r)=C(G, r)Ca.(G, r)C(G, r) or
e CL(/), (A4) {sa s e W} 2: {, , e}, where {e, .} is the unda-
mental system o] positive roots. In these assumptions, (A2) is essen-
tial, or the operators" 0(,. a) (a e A/) and C(s ,) (s e W) (see 3, 4)
are C-valued meromorphic ]unctions o , on and moreover 0(," a)
is holomorphic on + /- 1CL(/) under (A2).

2. Fourier transform on ’(G, z’). Let e (1_ k_n’) and
(1_i_/’) (cf. 3, Theorem 4) denote orthonormal basis for L-C(G, r)
and L.--C(M., r) respectively. Then for f in C(G, r) its Fourier
transform E(f) is defined as follows;

E(f)=((f, e))’(R)(f(.., o))’__(R)f() ( e . and e ),
where f(q.., ,) (f E(P ..’ ,." .)) and f(,) (f E(P 1" ," .)) (see
[3]). Obviously, E(f) is contained in cn’C(ffo)’C(), where C(o)
(resp. C(!)) ls the usual Schwartz space on . (resp. ). Here we
define the closed subspace C(.) o ’(.)’ (resp. (). o C()) as in
[3]. Then we obtained the ]ollowing theorem in [3].

Theorem 1. The Fourier transform sets up a homeomorphism

of C(G, r)= C(G, r)C.(G, r)C(G, r) and (G, r)=C’C(.)C()..
The inverse transform is given by

f(x) E (f e)e(x)+ j p(a,, ,.)E(P. . x)f(..,, ,.)d,o

+ WI [(,)E(P" l’v" x)f(v)d, (x e G),

where W. is the Weyl group for (G, A.) and a (1_i_/’) is the discrete
series for M. such that 4z.. is the matrix coelicient of a.

Before stating the main result, we have to obtain some informa-
tion or M. (see 3) and calculate residue integrals (see 4).

3. Analysis on M.. Let us agree to write the Harish-Chandra
expansion o the Eisenstein integral for (M., *P.) as follows;
E(*P" 1"*," *a)= e-*(1(*)){)(* "a)Co(*.)+q.(-*" *a)C.(-*)}

+ <for *a e A and *,. e ft.. Let {* l<_i<_l} denote the set of all poles
of .(*,." *a)C.(*,.)*-a on *.+,/-1CL(*.+). Then it is easy to see
that * e ,/-1".+. Here we note that Z.(*,.), the /-function for
(Mo, *P.), has at most simple pole or zero at *,.= *$:/:0 and .(*,. *a)

<is holomorphic on *+,/ 1CL(). Therefore using the relation"
</.(*,.)C.(*,.)*C.(*,.)= 1 (*, e .). we can obtain the following

Lemma 3. Each * (1_<i<_/) is a simple pole of /(*,) and
+E(*P." 1" *" *a) (*a e A.) is of the form"

(I) e-*"((*")).(* *a)C.(*J :/: 0, or



No.. 6] An Analogue of Paley-Wiener Theorem 299

(II) e-*"(’(*)){.(*i’*a)Co(*,)+(-*,’*a)C.(-*,o)],.__,,}.
In both cases E(*P" 1" * m) (m e M) is contained in C(M, r.).

For simplicity we put E=E(*P" 1" *," .) (1il) and suppose
that E0 for 1il’ and zero for otherwise. Then applying the
results in the case of real rank 1 (cf. [3]), we conclude the following

Theorem 4. Each E (1i/’) is of the form (I) in Lvmma 3
whose L-norm is given by E ., where

,=2zj-1 Res (*)
*a=*

and each E (/’+lil) is of the form (II). Moreover

is an orthonormal basis for C(M., .).
Let f be in C(G, ), where C(G, ) is the set o all C, r-spherical

unctions on G with compact support. Then it is easy to see 2rom the
above results that /(.,,) ( Z.
According to Theorem 1, we decompose f as f f0+f+f, where fo
e (G, r), f, e F(G, r) and f e C(G, r). Then using the inverse
transform for f and Lemma 5 in [4], we have the following

Corollary 5.

f(x)---1 2-1Res,.(.+*)

E(P" 1" ,+*" x)f(,.+ *)d,..
4. Residue integrals. Let f be in C:(G,r) and put f=fo+f

+f as before. Then by Theorem 1,

f(x)

Here we replaee N(P" 1" u" a) ( e A*) by its Harish-Chandra expansion
N(P" 1" " a)=e-(( (" a)C( ) ( e)

W

nd shif he integral line from o+-1, where such ha
()(" a)C(1; u) is holomorhie on+(8+*). hen usin the
same arguments in [4], we ean obtain that

e-o(o(( a)C(1 )*-f(v)d

+ e-((2-1 Nes (+*)
=1W *=*

x((+*)" a)C(1 (+*))f((+*))d- es es e-(((+*)C(1 +*)*-f(+*),
where Wo { e W e * and {(*, ) 1<i< l’, 1 l"} is he se
of interseetions of singular hyperplanes of (" )C(1 )*- which arise
when we shif the integral line. Nor simplicity we denote the firs
wo integrals by fg and I), respectively and the last term by RRz. hen

f=f+ I),-RR.
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Obviously, using the same arguments in the classical Paley-Wiener
theorem on an Euclidean space, we see that f belongs to C:(G, r).

For each i, ] (1]_/", lil’) let us suppose that (," a)C(1 ,)*-
has a pole o m-th order at ,=,.+5 (,. e .). Here we put

S={D(’)(*, )E(P" 1" +*. .) O<_m<_m--l,

where

D(’)(’ 5)=
a,2 -= a*v

Let {E(p)=D(’’’)(*(p), (p))E(P" 1". "x); lpy} be a maximal line-
arly independent subset o S. Then each element o S can be written
as a linear combination o E() (lgpgy), that is,

D(.)(*, )E(P 1" x)= A...E()(x) (x e G, A..., e C).
p=l

As in [3], we choose h()(lgp)eC:(G,r) such that
=q (lgp, qy) and put A.=(h,, eD (lp.y, lkgn’).

Lemma 6. For f in C(G, r) we put F=f-= (f,E())h().
Then RR=O.

This lemma is proved by the same way in [3, I, c. (4.16)].
In what follows we shall prove that F0=0. Here we note that

each E(P." .." ." x) (- Z..)/E(P" 1" +*" x) (1iF) satisfies
the weak inequality on G or ,. e .. Then using the Harish-Chandra
expansion of the right hand side, we can deduce the first relation in
the ollowing proposition and using the definition o (," a) directly
the second one.

Proposition 7. (i)
’ 1 2E Z 1 Res (,,+*,.)

i=l sew

where W= W-- Wo and for s e Wg,

(ii) For each s s W and l<i<l’ thee exists a meromovpMc func-
tion P on . such that

J,,(a) =exp {-(p+- ls*,) (log (a)))n,,(a) (a A+),
where

X exp {sv. (log (a))}dv..
Then by Corollary 5 and the above relation (i), we see that
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(.) , I,----rl-- js,
il sWo i=l sW

and thus,

r-ro-F-, J,.
=1 sWo

Moreover we obtain the following lemma which was used in [4] with-
out a proof.

Lemma 8. J,=O for all s e W and
To prove this lemma it is enough to prove that (s(,+*,): a)

(a e A+, , e) is holomorphic at *,=* for all s e W and li<l’.
This fact is obtained from the definitions of (, a) and (*, *a) for
s e W such that s=- or -, and from the relation (.), Proposition
7 (ii) and the following proposition for s e W such that s=--.

Proposition 9. There exists a function g in C(G, r) such $ha$

(1) RRg=O, (2) g0=0, (3) (,+*)0 for all lil’, (4) when P0
for s e W and 1i l’, then J, O.

Therefore using Lemma 8 and the relation (.), we see that F=Fo
+F. Since F-F has compact support and F0 is real analytic on G,
it is easy to see that F=F and Fo=O. In particular, since f is an
arbitrary function in C:(G, r), the following proposition is obtained.

Proposition 10.

e A;,E(; (1 kn’).
p=l

5. An analogue of Paley-Wiener theorem. We shall define the
subspace of (G, r) which will be the set of Fourier transforms of

)=(())=(,) in (G, r)C:(G, r). Let be the set of all b=(b
satisfying the following conditions;

(C1) each (1i/’) and can be extended to entire holomorphic

functions, which are exponential type, on and respectively,
(C2) (,) (,+*) (1i l’, , e ),

(C3) b= A;,D(’(*(;,) (ln’),
p=l

(C4) D(’(*,)= A,,,;D("’’(*(p, (;)
p=l

(lil’, 1]/").
Then our main result can be stated as follows.
Theorem 2. The Fourier $ransform se$s up a bi]ec$ion between

C:(G, r) and .
(Pr) As has been seen in 4, it is easy to see that the mapping:

fE(f) is injective one of C:(G, r) to . Therefore it remains

to prove the surjectivity. Let b ( )=()= be in and put
f=E-(b). Our purpose is to prove that f is contained in C:(G, r).

D(’ ’’ )(*), ))h() Obviously,Here we define F by F f-=
E(F) belongs to and thus satisfies the above conditions: (C1)-(C4).
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Then, applying the same arguments as before, we see that F F2
particularly, F has compact support. Therefore f has also compact
support on G. Q.E.D.
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