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67. On the Isomonodromic Deformation for Linear
Ordinary Differential Equations
of the Second Order

By Tosihusa KIMURA
Department of Mathematics, University of Tokyo

(Communicated by Kosaku YosIpA, M. J. A., June 11, 1981)

§ 1. Introduction. It was R. Fuchs ([1]) who gave first an ex-
ample of the isomonodromic deformation. Considering the differential
equation of Fuchsian type
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having x =21 as apparent singularity, he rediscovered the sixth Painlevé
equation as isomonodromic deformation equation. Then R. Garnier
([2]) derived all the other Painlevé equations by the isomonodromic
deformation for linear differential equations of the form
11 Y’ =py
with irregular singularities and an apparent singularity. (For the
isomonodromic deformation of equations with irregular singularities,
see [3], [4], [7].)

Recently K. Okamoto ([5], [6]) found the following two remarkable
facts: 1) The Painlevé equations are converted into Hamiltonian
systems, called the Painlevé systems, with polynomial Hamiltonian
functions. 2) If the linear differential equations considered by Fuchs
and Garnier are transformed into equations of the form
(1.2) Y +0Y +py=0
in a canonical way, then the isomonodromic deformation for the trans-
formed equations is governed by the Painlevé systems.

Fuchs and Garnier, and hence Okamoto supposed that the dif-
ference of the exponents at the apparent singularity is just two up to
the sign. The purpose of this note is to discuss the case when this
difference is greater than two.

§2. Preliminaries. If the equation (1.2) is transformed into an
equation of the form (1.1), we have

2.1 p=%pi+%pi—pz.

Suppose that p, and p, are rational in  and in several parameters.
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We consider the case when just one of the parameters, say ¢, can be
taken as a deformation parameter and the other parameters are viewed
as functions of £. It is known that the equation (1.2) can be deformed
in an isomonodromic way, if and only if there exist linearly independent
solutions ¥,(x, t), ¥z, t) depending analytically on ¢t of the equation
(1.2) and two functions A(x,t), B(x, t) rational in # and analytic in ¢
which satisfy
dy,/0t=Ady,/d0x+By,  (j=1,2).

The existence of ¥,, ¥,, A, B implies that the system of equations

oY /0x==z

0z/00=—D,2— DY

0y/ot=Az+ By
is completely integrable, whence we have

0"B/0x*+p,0B /ox—2p,0 A /0x — (0p,/00) A+ 9p,/3t =0,
20B /0 +0*A /0x*—p,0A /0% — (8D, /d%) A+ 0p, /dt =0.
Eliminating B, we obtain
2.2) 2715°A /ox* —2pd A /ox—(@p/ox)A+0p /3t =0,
where p is given by (2.1). It follows that the equation (1.1) can be
deformed in an isomonodromic way, if and only if there exists a func-
tion A(x,t) which is rational in z, analytic in ¢ and satisfies (2.2). We
remark that we obtain from (2.1)
(2.3) U 0Y,/0ot =Y ayl/ax\.
Y. 0Y,/0t] |y, 0Y./0%
§3. Linear differential equations. For each positive integer n,

we consider the following six linear differential equations

L y”+(1 L ’“‘+1 0 L )y/

z—1 —t x—2
+< _ t(t 1)H 22— )y:O
rx—1) az@—L@—1t) a2@@—1(x—2) ’
1—¢ it 2— 0 n
Ln: 4 ( 0 ) /
v Y+ = + (x 1y —I— R E— Y
i ( tH A2—1)pu >y =0
x(x— 1) x(x 1) z(x—1)(x—2)
6 H A
o " ( —ky __ ) ’ (____. R ) =0,
v Y+ 9&'—2 Y+ 5 2.’70+ (z—2) Y
Ly y,/'l’(ﬁ)z— —7]mt—— n )y/
r—2A
7e(60s +0 ) tH+ip A ) -0
+< 2x° +x(x—2) y="5
b ( )y + (—2090—2H+-9-0J“—>y=0,
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Ly y/——"_ y'+<—4x3—2tx—2H+ E )y:O.
x—2 x—2

The Riemann schemes R” for these equations are given as follows :
z=0 x=1 x=t xr=1 x=o
Rz, 0 0 0 0 x
£, £y 6 n+l y+e.,
where £ =((ky+ £, +0+n—2)*—£2) /4 =y(x +£..),
=0 =1 x=1 x=o
Ry o 006 o x
ke ot 0 n+1 ytr.
where r=((k,+6+n—2)*—£%)/4=2(+*.),

=0 x=1 X = 0o

Rz, o o o o0 @ ,
6 n+l 14 ¢ —f—k—n+2
=0 x=2 X =00

e e ———— e
R?II 0 0 0 O —_(009 +00)/2 ’
nt 6, n+l p.t (0.—0)/2—n+2

r=2 r=o00
" o o 00 &8 |
n+l 2/3 0 t —0—n+2
r=2 m:ooA(1/2)
R? 0 ~4/5 0 0 0 —t 3/2—n}.

n41 4/5 0 0 0 t 3/2—n
§4. Confluence of singular points. It was proved by Okamoto
that the equations Li—L! are derived from Li; by a process of step-by-
step confluence of singularities. This result is generalized as follows.
Theorem 1. The equations Li-1% are derived from 1 by a

process of step-by-step confluence of simgularities in the following
order:

Ln
Li——Li( | SLn—La.
VI V\Ln /‘ 11 I

The process of step-by-step confluence is carried out as follows:

Ly—Lt: 2—2, —2, ¢ 1, t—>14-et, ky—>ky,
ky—>7,/e+0, Ky—>k., 0—>—1,/c, H—>H /e
and then e—>0.

Li—Ly: a—ex/vV 2, 2—ed/V 2, p—>v 2 p/e, t—>1++/ 2 ¢t,
Ke—>ko i—>—1/&, £, —>1/¢,
0—>1/E+20—ky—n+2, H+k/t—>H/v/ 2¢
and then e——>0,
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Li—> Ly o—14ceta, 2—>1+¢td, p—>p/et, t—> 1%,
k>N /e =N 41, >Ny ko> /e—0.—1,
0—>6y, H—>(H + p/t) /2t and then e—>0,

Ly—Ly: a—¥ 4 a/e+1/e 2——¥ 4 2/e+1/8, p—rep/V 4,
t—>et/¥V 4 +1/¢, &, 1/2¢%, 6—>—0,

H——>¥ 4H/c—0/¢, and then e—>0,

Ly—— Ly 2——>1+2e, 2—>1+2e2, p—>p/2¢, t—>1+€%,
no—>—1/4¢*, 9., —>1/4¢*, 6—> —1/26*—20,
0.—>1/2¢*, H—>H /e~* and then e—>0,

Li—L3:  y—yexp (x*/3+tx/2) and then x—ex+1/¢,
A——>ed+1/e%, p—nl—nt/2—>p/e, t—>et—6/e",
0—>4e " +1—n/2, H+ni+nt*/2—>H /" —1 /26— 3 /e
and finally e——0.

§5. Hamiltonian systems. We suppose that x=211is an apparent
singularity for each equation L. Then we obtain a relation among
t, 2, u, H for each equation, and hence H can be considered as a func-
tion of ¢, 2, # which is denoted by H%. It is easy to see that Hj
(J=IV,...,I) are polynomials of 2, with rational coefficients in ¢,
and H} (J=IV, ..., I) are rational in 2, », t and that for n=3, H} are
algebraic in 2, 4, £.

We assign to each L the Hamiltonian system :
ps {dl/dt=aH9 Jop

dy/dt=—0oH" /aa.

From Theorem 1, we obtain the following theorem.

Theorem 2. The systems P2—-P? are derived from PZ% by the
same process of replacements as in Theorem 1 except for the replace-
ments of x in the order

Py,
Pl PP

We transform the equations L into the following equations of the
form (1.1):

n
111

o, n_( @ b c d n:4-2n
' v (xz + (x—1)* + (x—1)* + x(x—1)  4(x—2)*
tt—DH -1y > y
x2(x—1)(x—1) z(x—1)(x—2) ’
in. nv_[ @& bt* ct ad n:4-2n
Li: v —< T e a1 a2
tH 22—y
w17 T am—D@—2 )y

= 2 tx t? n*+2n J2 4 Ay
L ~=(L A S R e L __ﬁ),
R N T R L R LT | VLI Paroniy 1 L
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-, {at* bt | ct ni+2n | tH+a Qv )
: = 2 dE? — .

e Y (x‘ + 2 * X T Ax—A)} + 2x* x(x—2) Y

= 2n 5 y

T ”=(x‘ tet4aw4 T2 2H————> ,

ne Y +-tx’+ +4(90#2)2 + poo Y

- 120 ~ y

L;: "=<4.7c3 otp+ WA Lofy ) .

I Y + -1-4(90_2)2 + o Y

Suppose that x=2 is an apparent singularity for each L?. Then
for each L, H can be considered as a function of ¢, 2, v which we denote
by H:. We define a Hamiltonian system P? by
oy {dz/dtzaﬁg /o

dv/dt=—aH" /oa.

It is clear that for the equations Lz~ we have a theorem similar
to Theorem 1 and that for the systems P2—P7 we have a theorem
similar to Theorem 2.

§6. Isomonodromic deformation. First we consider the iso-
monodromic deformation for the equations L. Suppose thata, b, ¢, d
do not depend on the deformation parameter ¢{. (For some equations,
the independency from ¢ of all or some of a, b, c,d is evident.) The
first task is to determine a function A satisfying (2.2). Utilizing the
canonical expression of solutions at each singularity of Lz and the
relation (2.8), we infer that A is given by

Kx+L+>7, M, /(x— 2" for L, L and Lz,

A=!{L+>7 M, /(x— D" for Ly,
2 My /(x—2F for Ly and L,

where K, L, M, are functions in %, 2, . Inserting p and A into (2.2),
then expanding the left hand side into partial fractions and finally
equating the coefficients to zero, we get a system of relations. The
equation I can be deformed in an isomonodromic way, if the system
of relations is compatible. If so, we obtain a system of deformation
equations for L.

It is easy to see that if L» is deformed isomonodromically, so is
L2 and that, from a system of deformation equations of Lz, the corre-
sponding system of deformation equations of L7 is derived at once.

Okamoto showed that the systems of deformation equations of L}
and T} are given by P, and P} respectively and that the P}
(J=VI, ...I) are the Painlevé systems.

Calculations of checking whether L2 can be deformed become
enormous rapidly as n increases. We want to make the following
conjecture, however :

Conjecture. For every n and J, P is a system of deformation
equations of L and P is a system of deformation equations of L.

We have only the following partial answer to the conjecture.
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Theorem 3. For n=2,3 and J=VI, - .., 1, the conjecture is true.

The conjecture is also true for n=4,5 and J=1.

We have from Theorems 1-3 the following commutative diagrams
for n=1,2,3:

'el——»m/ ’\

/ P?V
Py — Pz _—— \

SNop—
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