5. Bochner Problem on a Topological Vector Space with a Quasi-Invariant Measure

By Yoshiaki OKAZAKI
Department of Mathematics, Kyushu University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

1. Let F be a locally convex space and ρ be another vector topology on F. Then ρ is called admissible if for every positive definite function ϕ , the ρ -continuity of ϕ is equivalent to the existence of a $\sigma(F', F)$ -Radon measure on F' (the topological dual) with the Fourier transform ϕ . The admissible topologies are not unique even on the Hilbert space (cf., Sazonov [9] and Gross [1]). We say the weakest of all admissible topologies (if exists) the S-topology. In case of a Hilbert space and a nuclear Fréchet space, the admissible topologies were given by Sazonov [9] and Minlos [6], respectively. Mouchtari [7] proved that if F is a Banach space with the metric approximation property and F' is L^0 -embeddable, then the S-topology exists, and gave explicitly the S-topology on L^p ($2 \le p < \infty$). The first aim of this paper is to prove that if F is a Banach space of dual S_p (1), thenthe S-topology exists and is given by a family of absolutely summing operators (Theorem 1).

Let ϕ be a continuous positive definite function on a locally convex space F. Then, in general, a σ -additive measure with the Fourier transform ϕ does not exist on F'. Sazonov [9] proved that, in the case where F is a Hilbert space, a σ -additive measure with the Fourier transform ϕ exists on a Hilbert-Schmidt extension of F'. The second aim of this paper is to find a suitable extension G of F' such that for every ϕ , there exists a σ -additive measure on G with the Fourier transform ϕ .

Let E be a locally convex space of second category (or barrelled), F be a complete locally convex space with the metric approximation property and $\iota: E \rightarrow F$ be a continuous injection. We shall show that if there exists an $\iota(E)$ -quasi-invariant Radon measure on F, then for every continuous positive definite function ϕ on F, a $\sigma(E', E)$ -Radon measure with the Fourier transform $\phi \circ \iota$ exists on E' (Theorem 3). The fundamental tool to prove Theorem 3 is a generalization of Xia's inequality (Xia [11], also Koshi and Takahashi [1]).

2. Let FD(F) be the set of all finite-dimensional subspaces of F and $W^0 = \{x' \in F' ; \langle x, x' \rangle = 0 \text{ for every } x \in W\}$ for $W \in FD(F)$. The finite-dimensional space F'/W^0 has the natural Borel field $\mathcal{B}(W)$. We

denote by $Z(F',F) = \bigcup \{\Pi_w^{-1}\mathcal{B}(W); W \in FD(F)\}$, where $\Pi_w \colon F' \to F'/W^0$ is the projection. A cylinder set measure ν on F' is a non-negative finitely additive set function on Z(F',F) with $\nu(F')=1$ which is σ -additive on $\Pi_w^{-1}(W)$ for each W in FD(F). The Fourier transform of ν is defined by $\nu^{\wedge}(x) = \int_{F'} \exp(i\langle x, x'\rangle) d\nu(x')$. For a continuous positive definite function ϕ on F, there is a cylinder set measure ν on Z(F',F) with $\nu^{\wedge}(x) = \phi(x)$ as is well known.

We say a Banach space E is of dual S_p (1) if the dual <math>E' is isomorphic to a subspace of $L^p(\mu)$, where μ is a positive measure. A cylinder set measure ν on the dual Banach space E' is called of type p (0) provided there is <math>C > 0 such that

$$\left(\int_{E'}|\langle x,x'
angle|^pd
u(x')
ight)^{1/p}\!\leq\!C\|x\|\qquad ext{for every }x\in E.$$

Let E, F be Banach spaces and $u: E \rightarrow F$ be a continuous linear operator. Then u is called absolutely p-summing (0 if there is <math>C > 0 such that $\sum_{i=1}^{n} \|u(x_i)\|^p \le C \sup\{\sum_{i=1}^{n} |\langle x_i, x' \rangle|^p; \|x'\| \le 1\}$, for every finite $x_1, \dots, x_n \in E$. In case p=1, we say u an absolutely summing operator. The next lemma is a particular case of Maurey [4, Théorème 2].

Lemma 1. Let E be a Banach space of dual S_p $(1 and q be <math>1 < q \le 2$. Then for a continuous linear mapping $R: E \to L^q([0, 1], dx)$, dx is the Lebesgue measure, the following conditions are equivalent.

- (1) R is absolutely summing,
- (2) for every cylinder set measure λ of type 1 on $(L^q[0,1])'$, the image $R'(\lambda)$ is $\sigma(E',E)$ -Radon with $\int \|x'\| dR'(\lambda)(x') < \infty$, and
- (3) $R'(\lambda_q)$ is $\sigma(E', E)$ -Radon with $\int ||x'|| dR'(\lambda_q)(x') < \infty$, where $\lambda_q \hat{\ } (f) = \exp(-|f|_{L^q}^q)$ for each $f \in L^q[0, 1]$.

Theorem 1. Let E be a Banach space of dual S_p (1 .Then the family of seminorms <math>(*) $x \to ||R(x)||_{L^q[0,1]}$ determines the S-topology, where q is arbitrary but fixed as 1 < q < p and R varies over all absolutely summing operators of E into $L^q[0,1]$.

Proof. Let τ be the vector topology determined by the seminorms (*). Let ϕ be a τ -continuous positive definite function and $T: E \to L^0$ (E^a, P) be $T(x) = \langle x, \rangle$ where P is a σ -additive measure on E^a with the Fourier transform ϕ . By the τ -continuity, there is $\delta_n > 0$ and an absolutely summing operator $R_n: E \to L^q[0, 1]$ such that $\|R_n(x)\| < \delta_n$ implies that $P(x' \in E^a; |T(x)(x')| > 1) < 1/n$. Fix s as 1 < s < q. Then by the Nikishin-Maurey's theorem, see Maurey [5, Proposition 4], E^a can be divided into a disjoint union of A_n such that the mapping $T_n(x) = T(x)\chi_{A_n}$ is absolutely summing from E into $L^s(A_n, P|A_n)$. By Lemma

1, the measure ν_n determined by $\nu_n \hat{}(x) = \int_{A_n} \exp(i\langle x, x'\rangle) dP(x')$ is $\sigma(E', E)$ -Radon since ν_n is the image $T'_n(\lambda)$, where

$$\lambda^{\hat{}}(f) = \int \exp(if(x'))dP(x'), f \in L^s(E^a, P).$$

Hence $\nu = \sum_{n=1}^{\infty} \nu_n$ is $\sigma(E', E)$ -Radon and $\nu^{\hat{}}(x) = \phi(x)$.

Conversely, if ν is $\sigma(E',E)$ -Radon with $\int \|x'\|^q d\nu(x') < \infty$, then the positive definite function $\exp\left(-\int |\langle x,x'\rangle|^q d\nu(x')\right)$ defines a Radon measure λ on E', see Mouchtari [7]. Thus $\nu^{\hat{}}(x)$ is continuous by the seminorm $\|R(x)\|_{L^q(\lambda)}$, where $R: E \to L^q(E',\lambda)$ be $R(x) = \langle x, \rangle$. Since $L^q(\lambda)$ is isometric to $L^q[0,1]$, $\nu^{\hat{}}(x)$ is continuous with respect to τ .

By (3) in Lemma 1, τ is the weakest one of all admissible topologies. This proves the assertion.

3. Let E, F be complete locally convex spaces and $\iota: E \to F$ be a continuous injection. Suppose that there is an $\iota(E)$ -quasi-invariant Radon measure μ on F. That is, $\mu_x \sim \mu$ (equivalent) for every $x \in \iota(E)$, where $\mu_x(A) = \mu(A - x)$. Let K be a compact convex subset with $\mu(K) > 0$ and put L = 2K. Let p be 0 .

Lemma 2. Let x_0 be in $\iota(E)$. Then there exists C>0 such that $|\langle x_0, x' \rangle| \leq C \Big(\int_L |\langle y, x' \rangle|^p d\mu(y) \Big)^{1/p}$ for every $x' \in F'$.

Proof. Suppose that $\int_L |\langle y, x_n' \rangle|^p d\mu(y) \to 0$ and $\langle x_0, x_n' \rangle = 1$ for $x_n' \in F'$. Taking a subsequence we may assume that $\langle y, x_n' \rangle \to 0$ μ -a.e. on L. By the quasi-invariance, it holds that $\iota(E) \subset \bigcup_{n=1}^\infty nK$, so $\delta x_0 \in K$ for small $\delta > 0$. Put $L_0 = \{y \in L \; ; \; \langle y, x_n' \rangle \to 0\}$, then $\mu(L \cap L_0^C) = 0$. Thus we have $\mu(L_0 \cap (L + \delta x_0)) \geq \mu(K) > 0$. Consequently, it must be $\mu_{\delta x_0}(L_0 \cap (L + \delta x_0)) > 0$. But it follows that $\mu_{\delta x_0}(L_0 \cap (L + \delta x_0)) = \mu((L_0 - \delta x_0) \cap L) = \mu((L_0 - \delta x_0) \cap L_0) = 0$, which is a contradiction.

Theorem 2 (Xia [11], Koshi and Takahashi [2]). Suppose that E is of second category or a barrelled space. Then there exists a neighborhood V of 0 in E such that for all $x' \in F'$

$$\sup_{x\in V} |\langle \iota(x),\, x'\rangle| {\leq} \Bigl(\int_L |\langle y,\, x'\rangle|^p d\mu(x) \Bigr)^{1/p}.$$

Proof. Put $V = \{x \in E; (**) \text{ holds}\}$. Then V is closed convex balanced subset. By Lemma 2, we have $E = \bigcup_{n=1}^{\infty} nV$, which implies the assertion.

By this theorem, ι' can be decomposed as $F'_{\tau} \to S(\infty) \to S(p) \to E'_{v_0}$, where $S(\infty)$ (resp. S(p)) is a closed subspace of $L^{\infty}(L, \mu|L)$ (resp. $L^p(L, \mu|L)$), τ is the Mackey topology and $E'_{V^0} = \bigcup_{n=1}^{\infty} nV^0$ is the Banach space with the unit ball $V^0 = \{z' \in E' ; |\langle z, z' \rangle| \leq 1 \text{ for every } z \in V\}$. Here we remark that the mapping $S(\infty) \to E'_{V^0}$ is absolutely p-summing by the Pietsch's theorem, see Pietsch [8].

We say a locally convex space F has the metric approximation property if there is a net $\{T_a\}$ of linear operators of E into E with the finite-dimensional ranges such that $\{T_a\}$ is equicontinuous and $T_ax \rightarrow x$ in E.

Now applying the general theory of absolutely p-summing operators to the factorization of $c': F'_{\tau} \to S(\infty) \to S(p) \to E'_{vo}$, in particular the case 0 (see Maurey [3] and Schwartz [10]), we have the following Bochner's theorem.

Theorem 3. Let E, F be complete locally convex spaces and $\iota: E \rightarrow F$ be a continuous injection. Suppose that there is an $\iota(E)$ -quasi-invariant Radon measure on F. Suppose also that E is of second category (or barrelled) and F has the metric approximation property. Then for every continuous positive definite function ϕ on F, there exists a $\sigma(E', E)$ -Radon measure with the Fourier transform $\phi \circ \iota$.

References

- [1] L. Gross: Abstract Wiener spaces. Proc. Fifth Berkeley symp. on Math. Stat. and Prob., vol. II, pp. 31-41 (1965).
- [2] S. Koshi and Y. Takahashi: A remark on quasi-invariant measure. Proc. Japan Acad., 50, 50-51 (1974).
- [3] B. Maurey: Applications p-sommantes, pour p reel ≠ 0, et démonstration d'une conjecture de Pietsch. Séminaire Maurey-Schwartz (1969-1970).
- [4] —: Probabilités cylindriques stables sur les espaces L^p , $p \ge 2$ et applications du théorèm de dualité. ibid., N° V (1972–1973).
- [5] —: Théorèmes de Nikishin, théorèmes de factorisations à valeur dans un espace $L^0(\Omega, \nu)$. ibid., N° X et XI (1972–1973).
- [6] R. A. Minlos: Generalized stochastic processes and their extension with respect to measure. Trudy Moscow Math. Soc., 8, 497-518 (1959).
- [7] D. Mouchtari: Sur l'existence d'un topologie du type de Sazonov sur une espaces de Banach. Séminaire Maurey-Schwartz, N° XVII (1975-1976).
- [8] A. Pietsch: Absolut p-summierende Abbildungen in normierten Räumen. Studia Math., 28, 333-353 (1967).
- [9] V. V. Sazonov: On characteristic functionals. Theory Prob. Appl., 3, 201– 205 (1958).
- [10] L. Schwartz: Application 0-radonifiantes. Séminaire Maurey-Schwartz, N° IX (1972-1973).
- [11] D. Xia: Measures and Integration Theory on Infinite-Dimensional Spaces.

 Academic Press (1972).