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(Communicated by Kunihiko KODAIRA, M. a. A., April 13, 1981)

The purpose of this note is to outline our recent results on the
structure of algebraic surfaces which may not be complete. Details
will be published elsewhere.

1o A triple (X, X, D) is said to be a non-singular triple, if X is a
complete non-singular surface over the field of complex numbers and
if D is a divisor with only simple normal crossings such that X=X\D.
We denote by K(X) the canonical divisor on X. We define logarithmic
m-genera P(X) and the logarithmic Kodaira dimension (X) by

P(X) dim H(X, m(K(X)/D)),
z(X) x(K(X)+D, X)

(see [2]).
In general, let z/be a divisor on X with x(z/, X)_ 0. Then one has

a Q-divisor d and an effective Q-divisor z/- such that
(1) =++-,
(9.) d+ is semiposiive (i.e. (d+, F)>_0 ]?or all curves F on X),
(3) the intersection matrix of z/- is negative-definite or /-=0,
(4) (+, -)=0.

This decomposition is unique and is called the Zariski decomposition
of /(see [4] or [51).

The main results are summarized as ollows
Theorem 1. If e(X) O, then P(X) 1 for some i, 1 i_66.
Theorem 2. If e(X)>_O and if D is connected, then Px(X)>O.

We shall outline proofs of hese theorems. A triple (X, X, D) is said
to be almost minimal i ghe support o (K(X)+D)- contains no excep-
tional curve of the 1st kind.

Lemma 3. Given a triple (X, X, D) with z(X)_>0, there exist an
almost minimal triple (Z, Z,B) and a birational morphism f" X--+Z
having the following properties"

(1) B=f.(D),
(2) (K(X) +D) =f*((K(Z)+B) +).
By the above lemma, it suffices to prove the theorems or almost

minimal triples (X, X, D). We need the ollowiag
Proposition 4. If (X, X, D) is almost minimal, then D-(K(X)+

+D)-) is effective and (X, D-(K(X)+D)-) is a relatively minimal model
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of (X, X, D) in the sense of Kawamata [4].
Put D--D-(K(X) -D)-. By Kawamata [4], n(K(X)+D,) is

generated by global sections for n>>0.
Firstly, we shall prove Theorem 1. Mimicking an argument in

Fujita [1], we can construct a non-singular triple C,:,) and a
morphism H" :)gX such that

(1) _q)=//-(D),
(2) //Ix is an etale covering map,
(3) P(2g)= .

Furthermore, we can assume that a cyclic group G acts on : in such
a way that _q) is G-invariant and :)/G is isomorphic to X. Let a be a
generator of G. Then a gives rise to an automorphism o H(, K(:)
+) which will be denoted by a*. We denote the eigenvalue of a* by
a. Then a is a primitive n-root of unity and we have P(X)--1. On
the other hand, by making use of the classification of the logarithmic
K3 surfaces (Iitaka [3]), we obtain n_66.

Secondly, we shall prove Theorem 2.
(A) The case in which z(X)=0.

can conclude that P(X)= 1.
(B) The case in which (X)=I.

PI.(X)>0.
(C) The case in which z(X)=2.
Proposition 5. If (X, X, D) is

By a rather easy argument we

By Kawamata [1], we have

We need the following
almost minimal, then Pn(X)

1/2(nK(X) [-- (n- 1)Dm,] + [Dm,n], (n- 1)K(X) [-- (n- 1)Dmn]
+[Dmin])+Z((C)x)+(n,D) for n_2, where e(n,D) is a non-negative in-
teger.

By the above proposition, we have P(X) O. Note that the proof
of this part is somewhat complicated.

2. In this section, we shall outline a proof of the following
Theorem 6. Let (x, y, z) be a system of homogeneous coordinates

in P. Let C,1,..., (a3, c1, ..., e C) be the curve defined by

y-z (x-- ay) z
i=1

+ xy+-- y-z-- (x--ay) +y+=0.
i=l i=1

The curve C,1,..., has the following properties"
() C{0.0.}-A’,
(2) (PC)=.

Conversely, the curve having the properties (1) and (2) is Ca,,,...,, up
to projective equivalence for some (a, 1, "’, ).

Let ,u" XP be a composition of blow-ups such that D Z-(C) has
only simple normal crossings. We can assume that Z is shortest among
such birational morphisms. We set X=PC. We denote by H" X3
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a morphism associated with [n(K(X)+D)I or n>>0. Since X is affine,
we have//(D)=z/. This implies a general fiber of//Ix is G. Hence,
there exist a Hirzebruch surface Y and a biratioaal morphism p" X-Y
such that//.p- is a morphism. We put =//.p-1 and denote by f a
general fiber of .

By taking a suitable Y, we can assume that F= p,(D) is either
(i) a sum of a 2-section (i.e. an irreducible curve with (,f)= 2)

and at most three fibers, or
(ii) a sum of two sections 2or the fibration and at most three

fibers.
Note that

(1) each irreducible component of D has a negative self-intersec-
tion number and

(2) the exceptio.nal curve in D is unique.
It ollows from (1) and (2) that F is a sum of two sections and three
fibers.

Then, we can conclude that (X, X, D) is a resolution of C,,,...,..
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