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0. In this note, we will show the new method or constructing
exact solutions of the vacuum Einstein equation or stationary axi-
symmetric gravitational fields (VESA).

From a viewpoint of the inverse scattering theory, Belinsky-Zak-
harov (B-Z) [1], [2] gave an interesting method or integrating VESA,
expressed by the metric orm
(0.1) --ds2=f(dp2+dz2)+gdxdx (a, fl=0, 1)
where f and g are unctions in p and z, and x, x represent the co-
ordinates t, , respectively.

Under the supplementary condition
(0.2) det g= p2, g-- (g),
the fields eluation or the metric (0.1) can be written as ollows

=O
(0.3)

U-V,+-’V+p-[U, v]=o
(log f), p-1 + (4p) -1 trace (U-V)

(0.4)
((log f)z= (2p) -1 trace (UV).

Here U=pg,g-, and V=pgg-. We should note that the matrix g is
symmetric. B-Z found that the equation (0.3) are equivalent to the
compatibility conditions of the system of linear ecluations

pV--2U y,
2 +p(O.5)

D2Y 2V+pU y,
2 +p

where
22 D---- 22p

and 2 is a complex parameter independent of p and z.
If we find a solution Y()= Y(, p, z) to (0.4), and set

(0.6) g= Y(0)= Y(0, p, z),
the potentials U and V in (0.5) can be recovered as U--pg,g-, V
=pgg-, so we obtain a solution of (0.3). But we should note that the
function g given by (0.6) is not always assured to be symmetric, real,
and to satisfy the condition (0.2). We can easily find the conditions
that g is real and satisfies (0.2) (cf. [1], [2], [9]). Therefore one of the



No. 4] The Gravitational Field Equation 211

crucial points to which we must make efforts is to find out the sym-
metric conditions for g= Y(0).

By applying monodromy preserving deformation (MPD), we are
succeed in construction of exact solutions of VESA. Namely, our
main tool here is MPD of a certain Fuchsian equation

(0.7) dY Ay.
d --1 --tIf the global monodromy of the normalized fundamental solution

matrix (briefly, the normalized solution) Y()= Y(, p, z) is kept, and at
the same time, satisfy appropriate conditions, then Y solves the equa-
tion (0.3) with some potential U, V, and its 0-value Y(0)= Y(0, p, z) is
symmetric.

This is our main result in this article.
The author would like to thank Prof. E. Date of Kyoto University

and Drs. M. Jimbo and T. Miwa of RIMS for many valuable sugges-
tions and stimulating discussions.

1. MPD and VESA. In order to construct special solutions
of (0.3), instead of (0.5), we start from a 22 Fuchsian equation in
the complex domain

(1.1) dY

_
A y

d --where ech singular point Z is a root o the quadratic equation
(1.2) Z-2(w-z)z-p=O, w e C,
namely Z is a solution of non-linear equations o first order

(1.3) 2 2p
3z +p 3p g+p

We assume that, in this equation, the exponents at each singular point
are distinct modulo integers, and that there exists the solution nor-
malized at the infinity Y()()= Y()(, p, z), which has a local expansion
at the infinity
(.4) Y()=(+?)2-’+...)(2-), as 2,
where L() is a diagonal matrix.

First we obtain the following fundamental theorem.
Theorem 1.1. If the global monodromy of Y()(2) is independent

of p and z (i.e. isomonodromic), Y()(2) solves the quation of (0.5),
where the potentials U and V are given by

This theorem is very important, and plays a central role in our
scheme. However we should note that the symmetry of Y()(0) is not
always assured. In order to describe the symmetric condition for
Y()(0) as that of the global monodromy, we need the following prop-
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osition, which was suggested by Prof. E. Date (cf. [3]).
Proposition 1.2 (Date). Let Y()= Y(, p, z) be a solution of (0.5).

If Y(O) is symmetric, there exists an invertible matrix S(, p, z) such
that

DS=DS=O,(.9)
and

’(1.10) Y(O)-- Y(-- __2S()tY().
2/

Here ty() denotes the transposed matrix of Y().
For the purpose of the interpretation to the feature of S(), we

introduce a variable w through
(1.11) w=2-(+2z---’p).
S() is a function of w, and if/ is a root of (1.2), S(p) is constant. S()
has also a symmetric property

(1.12) S()= S(-).
Let Yo() be a solution of (0.5) with potentials U0 and V0. Suppose

that Y0(0) is symmetric. We define a function S0() by (1.10), where
Y() is replaced by Y0(). Furthermore, let Y(2) be a solution of (0.5)
with new potentials U and V. Then we consider the condition that
Y(-(p/2))So(2)Y(2) just gives Y(0).

Proposition 1.. Suppose that g= Y(-(p/2))So(2)tY(2) is inde-
pendent of . Then the O-value of Y() is given by
(1.13) Y(0)=g,
moreover Y(O) is symmetric.

According to this proposition, we search or the condition that the
normalized solution Y()() of a 22 Fuchsian equation

has the symmetric 0-value Y()(0). In (1.14), a, b are two roots of a

quadratic equation of (1.2). We fix a function Y0(),

(1.15) Y0(2) (2--a)"(--b), , fl e C,
j=l

associated with (1.14), and set

((1.16) S0()=y0 y0(0)y0(2) -.
The normalized solution Y()() is assumed to have a local expansion at
each singular point
(1.17)
(1.18)

yo()Y()()-’[==l,
y()() G(,)? (,)()( z) ,,,
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(1.19) L(")=diag (/"), l")) and C(") is constant, invertible.
Namely the global monodromy of Y()(2) is preserved.

We state our main result.
Theorem 1.4. Suppose that the entries of any L(" are distinct

modulo integers. Then, g=Y()(-(p/2))So(2)eY()(2) is independent of, if and only if either of the following conditions is always valid for
any ]"
(1.20) /bj) +/j)=flj+, for s=l, 2,
and C(,> is a diagonal matrix,
(1.21) l) +1(), fl+a, for s=/=s’, s, s’ 1, 2
and C(,) is a diagonal free matrix, where C

For the proof, the reader should be referred to [9].
Using this theorem, together with Theorem 1.1 and Proposition

1.3, we can find out the symmetric solution g o (0.3).
2. Schlesinger transformations and symmetry. In this section,

we will discuss Schlesinger transformations which preserve the sym-
merry of Y()(0).

We make a Schlesinger transformation o type

(2.1) {a+,,..., a+ b+,,...,bn+},E,..., --E, E,, ...,E
E diag (1, 0), E.= diag (0, 1),

to the normalized solution Y()() of (1.1) (cf. [8]). Here a and b
(]=n+ 1, ..., n/N) are two roots of the quadratic equation
(2.2) /-2(wj-z)/-p=O, w e C, w=/:w, (]=/:k)

]=n+l, ..., n+N,
and assumed to be regular points o (1.1). At these regular points, a
gauge matrix G(") and a connection matrix C(") (z=a, b) are introduced
through
(2.3) C("); an arbitrary constant invertible matrix,

The multiplier R(D for the transformation (2.1) is given by

1 t(an/ 1) -I

1+ [G(+’ G(+)]W- 1 t(an N)-1

w=

(2.6) tG(+) [G}+) G(+)]21

ta(a+)- [(an+j)-I (an+j)-l][11 12

n+N Rj(2.4) R(2)= 1+
j=n+l +-- aj
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Throughout the following discussion, Y()(0) is assumed to be sym-
metric. We define S() by (1.10), replacing Y() by Y()(), and set
(2.7) Y)(2) R(2)Y()(2).
Then Y)(2) is a solution normalized at the infinity of a certain Fuch-
sian equation with singular points as p, ...,/, an+, "", b+, and if
the global monodromy of Y)(2) is kept, that of Y’)(2) is so. There-
ore Y)(2) solves the equation (0.5), whose potentials are replaced by,
say, U and V. But we should note that Y)(0) is not always sym-
metric eve if Y()(0) is so. Along he scheme stated in 1, we con-
sider g=Y()(-(p/2))S(2)Y)(2). By Proposition 1.3, if g does not
depend on 2, g=Y(0), and g is symmetric. In a similar way as
Theorem 1.4, we obtain the ollowing

Theorem 2.1. g=Y()(--(p/2))S(2)Y)(2) does not depend on 2,
hence g= Y)(O) is symmetric, if and only if the following condition
holds for each ]=n+l, ..., n+N.
(2.8) EC()S(a)C()E O.

Remark. The Schlesinger transformations considered in Theo-
rem 2.1 are equal to those constructed in [1], [2], because the ollowing
act holds:

"g-Y)(-(p/2))S(2)tY)(2) is independent f 2’ is eluivalent to
"g=R(-(p/2))Y()(O)eR(2) is independent o 2".

In [1], [2], B-Z determines the coefficients of R(2), by the latter
condition.. The v.function and the metric coefficient . In this section,
we will show that the r-unction or the Schlesinger equation is es-
sentially the metric coefficient f, defined by (0.4). Throughout this
section, the equation (1.1) and its normalized solution Y()(2) satisfy
the condition in the situation of Theorem 1.1.

First we interpret the r-function for the Schlesinger equation (cf.
[4], [7]). The Schlesinger ectuation is a deformation equation for Fuch-
sian system (1.1), and a completely integrable system, given by

(3.1) dA=

The -unction for (3.1) is defined by
1 d(/--/)(3.2) d log r--- trace AA

which is a closed 1-form under (3.1). The metric coefficient f is intro-
duced through (0.4), where the potentials U and V are given by (1.5).

By a direct computation, we can prove our first assertion.
Theorem .1. Under the condition of Theorem 1.1, we have

(3.3) pf= const
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where L(") is an exponent matrix of the monodromy of Y()() around

Next we consider how f changes under the Schlesinger transfor-
marion o2 type (2.1). Let Y)() be given by (5.1), and f, f the metric
coefficient corresponding to Y()(2), Y)(), respectively. By Theorem
3.1, together with Theorem 4.1 in Jimbo-Miwa [8], we obtain the 2o1-
lowing

Theorem 3.2. Let W be an N N matrix given by (2.5). Then
we have

(3.4) f constfp an_/P det W.
a+j
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