
164 Proc. Japan Acad., 5’7, Ser. A (1981) [Vol. 57 (A),

Branching o Singularities for Degenerate Hyperbolic
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By Kazuo AMAN0 and Gen NAKAMURA
Department of Mathematics, dosai University

(Communicated by K.Ssaku YOSIDA, M. $. A., March. 12, 1981)

Recently, one of the authors revealed a closed connection between
branching of singularities and Stokes phenomena for a certain class
of degenerate hyperbolic operators ([2]). We generalize his result to
the following type of degenerate hyperbolic linear partial differential
operators P in Re (R"

P= Pm_(t, x, Dt, Dx),
i=O

Pro(t, x, r, )= 1-[ (r--t2(t, x, )),
i=l

m-i

Pm_(t, x, r, )= t(’)P(t, x, )r--,
j=O

where Dt= a Dx=(DI Dxn)=( a 0 )-t -X --X
e N, z(i, ])=max(]--i, 0), ,(t, x, ) e C(RRR\O, R\O) are

homogeneous o degree 1 with respect to , and P(t, x, ) e C(R R
R) are homogeneous polynomials o2 degree 2" with respect to .
Moreover, 2(t, x, ) satisfy I(t, x, )-(t, x, )I_CI] (t e R, x e R,
e R \ 0) or some C 0 i i =/= ].

As or P, Uryu [8] establi’shed the wellposedness of the Cauchy
problem and Nakamura-Uryu [4] and Shinkai [6] illustrated the con-
struction of a backward and a orward parametrices o the Cauchy
problem with initial data at t=0 in terms of Fourier integral oper-
ators.

In this note we show that the equation Pu=O possesses a solution
whose singularities branch at t=0. The outline o the proo is as
ollows. According to the construction o parametrix given by Naka-
mura-Uryu [4], the main parts o2 the amplitudes which consist the
parametrix are determined by a undamental system o solutions of
the ordinary differential operator

m-i

L= t’)P(0, x, )D?--.
i--0 j=O

Its asymptotic expansions or large I1 considered in t0 and t)0 are
different (namely, Stokes phenomena occurs at t=0). The one is dif-
ferent from the other by multiplying Stokes multipliers. Observing
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this we can show our assertion by composing the forward and back-
ward parametrices with an appropriate initial data at t=0. The key
point is how to choose this initial data. In the following we state our
theorem and list up some lemmas which are necessary for the proof.
The details of the proof and more complete results will be published
elsewhere.

Let T be a sufficiently small positive constant. By (t, x, $) we
denote the phase function such that

--(t,
x, )=t2(t, x, fT(t, x, )) (It]<_T),

x, x.
We set I {t 0 <_at <_ T} for = 1. By S,(I) we denote the set of
all functions U(t, x, ) e C(I R R0) such that for any nonnega-
rive integer a and for any nonnegative integral multi-indices a, fl there
is a constant C,, satisfying

[DDDU(t,t x, )[<C,_,,(1+11)-’’([1-’ +]t}+’)
for all (t, x, ) e I XRY{ e R" [1). We also set

S’(I,) S’(I,), S-(I.)= Sq’(I),

Sq+’r+(Ia) Sq+,+(I,), Sq+O.(I)= Sq+"(I).
)0 0

For simplicity, we use the variables w=t]l/(+, z=(t+/(g+l))]],

Lemma 1. The equation Lv=O has formal solutions v(z, x, )
(li<m) of the forms

v(z, x, 0)=exp(-1(0, x, O)z}z‘(x, c(,, x, O)z

where

x -(0, x, 0)

x, x,

and c(v, x, ) (, O) are determined as in [2].
Lemma 2. There is a fundamental system of solutions V.(w, x, g)

(l<i<m, a=l) of the equa$ion LV=O such ha$ Vow(w, x, O)v(z,
x, 8) as aw+ in R. Here "" stands for the asymptotic equaliSy

for all the derivatives of Vow(w, x, O) and v(z, x, O) provided Sha$ we
mean by the derivatives of v(z, x, O) She differentia$ion of v(z, x, O) in
he ermwise sense.

Lemma 3. There are S$okes multipliers S,.o(x, O) (1 i, ]m,
a, a= 1) such tha$ S,.(x, O) e C(RXS-1) and
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Vo(w, x, 0)= Vo,(w, x, O)So,o(x, 0).
i=l

We set

W(w, x, 0)=exp{--/-12(0, x, O)z} V(w, x, O)

o,D(x, 0)=det V(0, x, 0)"
il, m

and by W:(w, x, ) we denote the (k, i)-coactor of the matrix

Lemma 4.
W(, z, 0) -ltlz"(’{(O, z,

(, z, o) -l-/-(e+ 1)-/*t-xll-/+-z-(,{i(o, x, o)+O(z-9}
as aw+ in R. Here ](0, x, O) is the (k, i)-cofactor of the matrix

((o, , o). i,o, ...,, -) o(z-) c io.(z, ,
defined in aw0, x R, [O[= 1 such that

]DDDf(z, x, O)C,,,]z] (awl x e R,
for any nonnegative integer a and any nonnegative multi-indices
and for some C.... 0.

We define the transport operators T, T, by
T-- exp(---l}P(exp{- 1}. ),

,-exp{-} (ex{- 1}.).

We set =su(,os-e(, 0).

Lemma 5 (Nakamura-Uryu [4]). There ezit mbol
U,(t, z, ) S-(/e++’(e++(I), g,e(t, z, ) S-(/e+l+’(I)

such tha
T(Uo,+ u*,) o
T,(U,/ U*,)l=o-3 (0<_h___m-1)

Furthermore, U,(t, x, ) admits an asymptotic expan-mod S-(Io).
sion

Uo,- U:,
v----0

(namely, U,,-, U;, e S’-(/*+/,’(e/)//(I) for N=I, 2, ...).
0,0Here U,,(t, x, ) is given by
0,0u,,(t, x, #)= w(tl#l/‘’+), x, o)w(o, x, o)

Fix (x, 0) e R2S- and define the Fourier integral operator
F.,_(t)" 3’3’ by
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F,_(t)f(x)=E [ exp{j- l(t, x, )}Z()(U,+ U*,)(t, x, $)
k=O J

W_(O, x, O)f()d$ (f e , t e
where d=(2)-d and Z()e C(R) is a cutoff function such that
0_Z()_l, Z()=0 i 1l_1/2 and ;()= 1 i [1_ 1. By H(t we denote
the canonical transformation generated by phase unction (t, x, ).
Then we have the ollowing

Theorem. Assume S/p,_q(x,O)=/=O for some l_p, q_m. If
g(x) e q’ and (x, 0) e WF(g), then

u(t, x)= , Fi, q(t)g(x) (t e Is, a= +_ 1)
i=l

belongs to C([--T, T], ’) and is a solution of the equation Pu-O
modulo a C function such that

H()(x, 0) e WF(u(t, )) (0<_ t <_ T),
Hq(t)(x, 0) e WF(u(t, .)) (- T t <_ 0).
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