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1. Introduction. Edrei and Fuchs [1] established the following
interesting theorem :

Theorem A. Let f(2) be a meromorphic function of order 2,0
<A<1. Put

#=1—-0600, f) and v=1—0d(c0, f), 0=Zu,v<1,
where §(a, f) denotes the Nevanlinna deficiency of a value a. Then
we have
w2+ —2uv cos tA=8in*(z ).
Further, if u<coswl, then v=1; if v<cos i, then u=1.

This beautiful and elegant theorem solves completely the problem
of finding relations between any two deficiencies of a meromorphic
function of order less than one. A little later, Edrei [2] showed that
the order 1 in the theorem may be replaced by the lower order .

Shea [4] obtained a result which concerns with the Valiron defi-
ciency 4(a, f) instead of d(a, f). That is, he proved

Theorem B. Let f(2) be a meromorphic function of order 2,0
<2<1, whose zeros lie on the negative real axis, and whose poles lie
on the positive real axis. Put

X=1—-400, /) and Y=1—4d(co, f).
Then, when 1/2<21<1, we have
X2+ Y?—2XY cos nA<sin’(z2a).
When 0<2<1/2, the above inequality still holds provided
X=cos(md) and Y=cos(nd).

The purpose of this paper is to extend these theorems to n-valued
algebroid functions of order less than one. Our results are as follows:

Theorem 1. Let f(2) be an n-valued algebroid function of order
1, 0<2<1, defined by the irreducible equation
11 AR f+A @S+ +4,()=0,
where Ay(z), A(2), ---, A () are entire functions without common
zeros, and we suppose that 0 is not a Valiron deficient value for Az).

Let a,, j=1, - - -, n, be mutually distinct values, and put
1.2) u;=1—6(a;, f) and v=1—d(co, ), 0=u, v<1.

Then, there is at least one a,, 1<v<n, such that
(1.3) w2 —2u,v cos tA=>n"2 8in*(xl).
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If u,<n 'cos i, then v=1/n; if v<n~'coszi, then u,=21/n.
Theorem 2. Let f(z) be an n-valued algebroid function of order
2, 0<2<1, whose poles lie on the positive real axis. Let a,, j=1, ---,
n, be mutually distinct values and put
(1.4) X;=1—4(a,, f) and Y=1-—A4(co, f).
We suppose that zeros of f(z)—ay, j=1, - - -, n, lie wholly on the nega-
tive real axis. Then, when 1/2<2<1, we have
(1.5) X2 4+Y*—2X,Y cos zA<sin*(z2), j=1, .-, n.
When 0<A<1/2, the same inequality still holds for some pair (X,, Y),
provided
(1.6) X, =cosni and Y=cosrA.
2. Preliminaries. Let f(z)anda, j=1, - -, n, be asin Theorem
1. Let Y ,(2) be the j-th determination of f(z), 1<j<n. Put
A(z)=max (1, |A(3)], - - -, | 4.(A)]),
9(@)=max (1, |g,(2)], - - -, |9.(2)]),
in which g,(z)=A(2)a7+ A,(R)at '+ - - + A,(2), and

ur, A)=—1_ j" log A(re®)de.
2zn Jo

Then, by a theorem of Valiron [6], we have

2.1 |u(r, A)=T(r, )|=0().
Ozawa [3] showed that
(2.2) wr, 9)=pu(r, A)+0Q),
z N A(z)
2.3) 3 log*|y,(2)|<log l e l +0(1).

We put f,(2)=g9,2)/A(z). Then, by [5, p. 2, Prop. 4 (ii)], we have
(using (2.1))

(2.4) T(r, f<nulr, A+0MD) =nT(r, /)+0Q),
from which we see that f,(2) are meromorphic functions of order at

most 1.
da+N(a», 1 )
id) Ao

Then, we have
== log*(maXlgj(re”)l)dﬁ
2r Jo J

@5 3T, )23 o f log*

— Lﬂ fo log™*| A,(re?)| d6+N(7~, ?11__)

0

- L vt ()

0
=nu(r, 9)—m(r, A)+N(r, 1/A)
=nu(r, 9)—m(r, 1/4)+0Q).
Since 0 is not a Valiron deficient value for A,z), we have
(2.6) m(r, 1/A)=0o(T(r, A))=o0(u(r, A))=o(T(r, f)).
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By (2.1), (2.2), (2.5) and (2.6), we obtain
@.7) wT(r, £)<nu(r, A)+O01)< z T(r, f,)+o(T(r, £)).

3. Proof of Theorem 1. We make use of the techniques of
Edrei-Fuchs [1]. Since each f,(2)=g,(z)/A,z) is a function of order
<2<1, we obtain as in [1, p. 239],

81 T, f j)éjj N, 0P, 7, ﬂj)dt+I: N(¢, «0)P(, r, = —Bydt,
where

P(t,r,y)=z""rsiny/(*+2tr cos y+1°) O<y<n)
and B,=p,(r) is a number such that 0<g,<z. N,(¢, 0) and N(¢, o)

denote the counting functions of 1/f,(z) and Ay (z), respectively.
By (8.1) and (2.7), we get

nT(r, f)gil :nN(t; a, P, 7, 8,)dt

+ jz j : nN(t; oo, F)P(, 1, m—p,)dt.

Let U, and V be such that U,>u, and V>v. Then, by the definition
of deficiency
N(t; @y N UJT(t’ f) and N(t; o0, NHKVT(, 1) (t=1ty).
Asin[1, p. 240], we make use of the notion of Pélya peaks {r,}. Then
we deduce
0

n t 2—¢&
(8.2  (A+oWIT(ra, N3 U T, f){j (T) P(t, 7, Byt

()

m

m

+z VTG, 1) {L“ (L)“'P(t, Ty T —B,)dt

m

[ <_:_>“'P(t, o = B} (),

where 7(r,) is a quantity such that 5(r,)=0@1/7).
Writing t=sr,, we obtain

[ ()Pt gt (L) P

0 m
=["sPs, 1, ppat+ [ (=5 PGs, 1, ppds= SR 4,
0 0 sinzl

where 0<s**—s*** <t (0<s<1). Let r,—c and then make (in this
order) the transition to the limit ¢—0, —0, U,—»u, V—>v. We argue
similarly for the terms including =—pB,. Thus we get
(3.3) 1<3] max {(x, sin §,1+0 sin (x—B)2)/sin x2}.

Jj=10sgj==
Since u,sin g,A+v sin (z—g,) 2 is a continuous function of B,, we can
find 7, for which the max,g,,.. in (3.3) is attained. Hence
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(8.4) sinma<>. {u,siny, A+ sin (r— )i} <nfu, sin y,A+v sin (= —71,)3}
7=1

for ay, 1<y<n. Thus
(8.5) sinzA<n*{u,siny,A—v sin 7,2 cos i+ v sin z1 cos r,4}?
<n*{(u,—v cos 72)*+v* sin’za} = n*{ul+ v’ —2u,v cos x1},
which proves the inequality in Theorem 1.
If v<n~'cosni, then from (3.5) we see that y,+0, and by (3.4)
nu, sin y,A>sin z2—sin(z —y,)A cos 72
>sin 74 cos (x —7,)A—sin (x —7,)A cos d
=giny,A, u,=1/n.
The case u,<<n~'cos =zl is treated similarly.
4. Proof of Theorem 2. We follow the method of Shea [4].
Applying Shea’s representation to meromorphic function f,(2)=g,(2)/
A/(?) and using (2.4), we have

@h T, Hz[ wNE; e, NP, T, pdE

+ J " NG ; oo, FIP(t, 7, m—B,)dt— Alog r
0

with a suitable constant 4>0 (see [4, p. 215]).

Let X,, Y be such that 0<X,<X, and 0<Y<Y. Then
(4.2) N(t;a, N=X,TE, f) and N(t; o, NZYTE, f) (=t
We argue as in [4, p. 216]. Let ¢ be the lower order of the algebroid
function f(z), and choose any positive number p such that 4<p=<2,
and let {r,} be a sequence of Pélya peaks of the second kind, of order
o, for the function T'(r, f). Then we obtain by (4.1)

Ty H)2X, T £)A+0(1) j (t/r)P(t, T B

+ T, ) At0() [ @/ra)PCE, 7y 5—)dt— Alogy

(m—o0),
where s and S run over the associated sequences {s,,} and {S,,} for {r,}
[4, p. 208]. Making the change of variable s=t/r, and divided by
T(rm, 1), we get
1+oM=X, [ sP(s, 1, 8)ds+ T [~ " stB(s, 1, = —B,)ds

Sm/Tm Sm/Tm
(m—>o0).
Thus

12X, [ sP(s, 1, p)ds+ T | *Pls, 1, 7—p)ds.

Evaluating these integrals and letting X,—X,, Y—Y, we obtain
4.3) sinzp=X,sin o+ Y sin(@—B)o (u=<p=2)
for any j, 1<j<n. (4.3) holds for any g,, 0<B8,<=, but since the
right hand side is continuous, (4.3) holds for 0<8,<x.
We put p=2 and g,=2"'tan"'((X,—Y coszd)/(Y sinza)). Then
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we obtain easily the inequality (1.5). We note that the supposition
(1.6) insures that 0<8,<z when 2<1/2.
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