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11. On 2p.Fold Transitive Permutation Groups. II

By Mitsuo YOSHIZAWA
Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Jan, 12, 1980)

§0. Introduction. The purpose of this paper is to extend the
results of Yoshizawa [7] and Bannai [2].

In 8§81 and 2, we shall prove the following results which are
obtained by improving some parts of the proofs of [7].

Theorem 1. Let p be an odd prime =11, and let q be an odd

prime with p<q<p+-p%1—. Let G be a 2p-fold transitive permuta-

tion group on a set ={1,2,.--,n}. If the order of G,,,...., is not
divisible by q, then G is S, Qp<n<2p+q—1) or 4, Cp+2<n<L2p
+q—1.

Theorem 2. Let p be an odd prime >11, and let q be an odd

prime withp<q<p+%. Let G be a 2p-fold transitive permuta-

tion group on a set Q={1,2,---,n}. If G,,,...., has an orbit on
0—-{1,2,---,2p} whose length is less than q, then G is S, Cp+1<n
<2p+q—-1 or A, 2p+2<n<2p+q-—1).
As an immediate corollary to Theorem 2, we have the following
Corollary. Let p be an odd prime =11, and let q be an odd

prime with p<q<p+-1lg—1. Let D be o 2p-(v, k,1) design with 2p

<k<2p+q. If an automorphism group G of D is 2p-fold transitive
on the set of points of D, then D is a 2p-(k, k,1) design, namely o
trivial design.

In §3, by making use of the above results and the proof of [2,
Theorem A], we shall prove the following

Theorem 3. Let p be an odd prime >11, and let q be an odd
prime with p<q<p+p—;1—. Let G be a 2p-fold transitive permuta-

tion group on a set 2={1,2,..--,n}. If a Sylow gq-subgroup Q of
G,s,... 20 18 Semiregular on 2—I1(Q), then G is S, p<n<2p+29—1) or
A, @p+2<n<2p+29—1).

§ 1. Proof of Theorem 1. Lemma 1. Let p be a prime >11
and q be a prime with p<g<p-+ p;l , and let r be an integer with
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0<r<qg—p—1. Then there exists no permutation group G on a set
2={1,2, - - -, n} which satisfies the following condition: For any 2p
POINts oy, -+, Of 2, P||Gayeeas,| O0d QX|G,,.....p,| hOld, and any
element of order p fixing at least 2p points fixes 2p+r or 3p+1r points,
and moreover G contains an element of order p fixing 3p+r points.
Proof. Let G be a group satisfying the above condition, and let
a be an element of G of order p fixing 3p +7 points. We may assume that

a'=(1) . (3p+7‘)(3p+¢+19 v ‘,4p+”')' tte Set T'= Ca(a)3p+r+1 ----- 4p+re
Then T is a permutation group on I(a) (|I(a)|=38p-+7r) satisfying the
following: For any p points «, ---,a, of I(@), »||T.,..., and

q4|T,,....,| hold. We will show that such T does not exist. Let
4y, - -+, 4, be the orbits of T with |4,|>p (i=1, ---,s), where s is at
most three because of |I(a)|<<4p. Suppose that s=3. Set |4,|=p+Fk,
(2=1,2,3). Then (p+k)+@®@+k)+{®+k)<3p+r. Hence, (k+1)
+(k,+1)+(k,+1)<r+38<p, which contradicts the property of 7.
Suppose that s=2. We may assume that |4,|>|4,]. Set |4,|=p+Fk.
We divide the consideration into the following two cases: () p+k>q,
(II) p+k<q. First assume that the case (I) holds. Since 3p+7r
<(@p—1)+q and |4,|=p+k>q, we have |4,|<2p. Then for p points
a, - a,0f 4, T, ..., contains a p-cycle (8, - - -, B,) with {8, - -, B8,}
C4,. Set H={(B, -+, B,)*|x e T*)y. Then H* is transitive, because
T# is transitive and |4,|<2p—1. Furthermore, H* is primitive, and
so H* is (|4,|—p+1)-transitive by [5, Theorem 13.8]. On the other
hand, H is a subgroup of T with H#=1. Hence, since H contains a
g-cycle, T contains the ¢-cycle. This is a contradiction. Next assume
that the case (II) holds. Let B, - - -, B;.;: be k+1 points of 4,, Then
the stabilizer in T4,... ,,, of p—k—1 points contains an element of

order p. In this case, since k<<q— p<p21,wehavep k— 1>70+1

>6. So, if T* is primitive, then we have T%>A“ by [5, Theorem
13.10]. In particular, since |4,|>p+@—k—1)>p+ 2L p+1 >q, T* con-

tains a g-cycle. Therefore T contains the g¢-cycle, a contradlctmn.
Thus, T* is imprimitive. If the length of a block of T* is at least p,
then we get a contradiction by a similar argument to the case s=3.
Therefore, the length of any block of 7% is less than p. Hence we
have |4,|>2(p—k—1)+2p>3p-+1, a contradiction. Suppose that s=1.
First assume that T4 is imprimitive. If the length of a block of T* is
at least p, then we get a contradiction by similar arguments to the
cases s=3 and s=2. Therefore, the length of any block of T% is less
than p. Hence we have |4,|>2p+2p=4p, a contradiction. Thus T*
is primitive. Since the stabilizer in T4 of p points contains an element
of order p, we have T“> A4 by [5, Theorem 13.10]. Hence T contains
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a g-cycle, a contradiction.

Proof of Theorem 1. Let G be a counter example to the theorem.
Let P be a Sylow p-subgroup of G,,,...,,. Then P+1 and P is not
semiregular on 2—I(P), by [1, Main Theorem] and [2, Theorem 1].
Set |I(P)|=2p+7r, where 0<r<p—1. First assume that r>q—p.
Let R be a subgroup of P such that the order of R is maximal among
all subgroups of P fixing at least 8p points. By Theorems A and B
in [6], we have |I(R)|=3p+7r (>2p+q) and there exist 2p points
ay, -+ -, 0, in I(R) such that No(R)I®. ., contains a g-cycle, a contradic-
tion. Next assume that r<q—p—1. Let @ be a subgroup of P such
that the order of @ is maximal among all subgroups of P fixing at
least 4p points. Set N=N4«Q)*?. Then N is a permutation group
on I(Q) (I(Q)|>4p) satisfying the following: For any 2p points
&y, vy 0y Of I(Q), D[Ny, c,) @0 [N, ... o, | hold, and any element
of order p fixing at least 2p points fixes 2p+r or 3p+r points. More-
over, by Therems A and B in [6], N contains an element of order p
fixing 3p+r points. Hence, we get a contradiction by Lemma 1.

§2. Proof of Theorem 2. Lemma 2. Let p be a prime and
t=p+2, and k be an integer with t+1 (=p+3)<k<t+p—1(=2p+1).
Then there exists no permutation group G on a set 2={1,2,...,n}
which satisfies the following condition: For any t pointseay, - - -, a, Of
2, a Sylow p-subgroup P of G,,,....., I8 nontrivial and semiregular on
R—I(P), where I(P) depends on {a,, - - -, a;} but not on the choice of P,
and |[(P)|=k.

Proof. Let G be a group satisfying the above condition, and let
a be an element of G of order p fixing % points. We may assume that
a=Q)---@---(kK)k+1, - -, k+p)---. Set T=Cuxl@)i¥.. r.p- Then
T is a permutation group on I(a) (I(a)|=k>p+3) satisfying the fol-
lowing: For any two points «, § of I(a), a Sylow p-subgroup S of
T,s is a cyclic group generated by a p-cycle, and I(S) depends on {«, 5}
but not on the choice of S. We will show that such T does not exist.
‘We may assume that T contains a p-cycle z of the form x=(1, 2, - - -, p).
Let y be a p-cycle in T, ,,,. Since #,yeT,,, and I(x)=I(y), we have
INIy={p+1}. So, {p+2,---,k}NI(y)=¢. Hence y fixes a point
4 with 2<i<p. Set w=(a*"")"'yx*~'. Then since I(y) NI(w) 31, p+1,
we have I(y)=I(w). Assume that y moves some point y of {1, -- -, p}.
Then w moves 7***, and so ¥y moves 7**"*. Repeating the argument,
y moves =0 o2 ¢=0 ... Hence y moves all points of {1, ---,p}, a
contradiction. Thus, we may assume that y=®+2, ---,2p+1), and
k=2p+1. Let z be a p-cycle in T,,,,, Then |[I(x)NI(2)|>2 or
[ I(y) N I(2)|>2 holds. This is a contradiction, because I(x)=+1(z) and
I #=I1(2).

Proof of Theorem 2. Let G be a counter example to the theorem.
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Let 4 be an orbit of G, ,....,, on 2—{1,2, - - -, 2p} such that |4|<q. By
[4, IV], we have 2<|4|<q. Let Q be a Sylow g-subgroup of G,,....,,.
Then by Theorem 1 and the lemma of Witt [5, Theorem 9.4], we have
Q+#1 and NyH(Q'® >A"®, Since I(Q) D4 and NyQ){ @z
>AT@-tl e have I(Q)=4U{1,2, - --,2p}. This shows that I(Q)
depends on {1,2, - - -, 2p} but not on the choice of Q. Let R be a sub-
group of @ such that the order of R is maximal among all subgroups
of @ fixing more than {I(Q)| points. Set N=N (R)!'®, Then N is a
permutation group on I(R) (I(R)|>2p-+q) satisfying the following:
For any 2p points ay, - - -, a;, of I(R), a Sylow g-subgroup S of N, ... o,,
is nontrivial and semiregular on I(R)—I(S), where I(S) depends on
{o1s - - -, a5} but not on the choice of S, and |I(S)|=2p+|4|<2p+q—1.
Hence, we get a contradiction by Lemma 2.

§3. Proof of Theorem 3. Lemma 3. Let G be a 4-transitive
but not 5-transitive group on a set Q={1,2, ---,n}. If Gu,4,4 does
not stabilize any orbit of G, s o set, then G is A,.

Proof. Let G be a counter example to the lemma. Let P be a
Sylow 2-subgroup of G,,,. Then by [3] and [4, VII, VIII, IX, XI],
P is nontrivial and is not semiregular on 2—1I(P), and |I(P)|=4 or 5.
If |I(P)|=5, then G,,;, has a unique orbit 4 on 2—{1, 2, 3,4} such that
|4] is odd. So, Gy, stabilizes 4 as a set, a contradiction. Hence,
we have |I(P)|=4. Let R be a subgroup of P such that the order of
R is maximal among all subgroups of P fixing at least six points.
Then by Theorem 1 in [4, X], Ny(R)*® =8,, A; or M,,, We may
assume that I(R) > 5,6. Let 4 be the orbit of G, such that 4355,6.
By the assumption on G, G4 contains an element g such that 4-+4°
(where 4° i an orbit of G,,,). Since S;, 4; and M,, are 5-transitive
groups, Ny(R) contains an element / such that g®*%#=pt%54 gand
5*=6. Then we have 4> '=4. Hence, we have 4" **=4%4. Since
h='g € Gy, this is a contradiction.

Proof of Theorem 3. Let G be a counter example to the theorem.
Let @ be a Sylow g-subgroup of G,;,....,. Then Q issemiregular, and
Q+#1 by Theorem 1. Furthermore, by [2, Theorem A], we have
[2—1(Q)|=q (mod ¢*). We may assume that @ contains an element a
of order ¢q such that a=Q)---@Qp+r)Cp+r+1, ---, 204+r+¢q). -,
where 0<r<qg—1. Since n—2p+r)=q (mod ¢?), G contains an ele-
ment of order ¢ which fixes less than 2p+» points. Hence by the
proof of Theorem A in [2], we see that Cu(a),,... 5p-2,13p-1,2p) 2p+1,00 2p e 18
transitive on 2—{1, ---,2p+7} (cf. [2, (1.4) in §1]). Hence by
Theorem 2, G;.... 55-2,4p-12y 18 transitive on 2—{1, . . -, 2p}, because of
r<q—1. Hence by Lemma 3, G,....,, is transitive on 2—{1, - - -, 2p}.
Thus G is (2p+1)-transitive on 2. Repeating the argument, we infer
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that G is @p+r+1)-transitive on Q2. Since q/4|G,,...;5,,,.,1/, We have
G > A? by Theorem 1, a contradiction.
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