102. On the Regularity of Arithmetic Multiplicative Functions. I

By J.-L. Mauclaire*) and Leo Murata**)
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1980)

1. Statement of result. An arithmetical function $f(n)$ is called additive (resp. multiplicative), if $f(m n)=f(m)+f(n)$ (resp. $f(m n)$ $=f(m) f(n)$) for any pair m, n of relatively prime natural numbers, and is called completely additive (resp. completely multiplicative), if the above equality holds for every pair m, n.

We have several sufficient conditions under which an additive arithmetical function turns out to be completely additive. P. Erdös ([1]) proved that an additive arithmetical function which satisfies the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\{f(n+1)-f(n)\}=0, \tag{1.1}
\end{equation*}
$$

is completely additive (and, more than that, it is equal to $c(\log n)$ for some c. .
I. Kátai ([2]) succeeded in replacing (1.1) by a weaker condition,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant x}|f(n+1)-f(n)|=0 \tag{1.2}
\end{equation*}
$$

F. Skof ([3]) gave another condition: an additive arithmetical function which satisfies

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \oplus S}}\{f(n+1)-f(n)\}=0, \tag{1.3}
\end{equation*}
$$

where S is a sequence of density zero, is also completely additive.
We shall prove here a theorem which will show clearly the link between F. Skof's and I. Kátai's results.

Theorem. Suppose $g(n)$ is a multiplicative arithmetical function such that:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{n<x \\ n \notin S}}|g(n+1)-g(n)|=0, \quad \text { and } \quad|g(n)|=1, \tag{1.4}
\end{equation*}
$$

where S is a sequence of density zero. Then $g(n)$ is completely multiplicative.
2. Proof of the theorem. Lemma. Let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of integers. Suppose $\limsup _{n \rightarrow \infty} t_{n} / n<\infty$, then, under the assumption of our theorem, we get

[^0]$$
\sum_{n \leqslant x}\left|g\left(t_{n}+1\right)-g\left(t_{n}\right)\right|=o(x) .
$$

Proof of the lemma. It is sufficient to prove

$$
\sum_{n \leqslant x}|g(n+1)-g(n)|=o(x) .
$$

Since $|g(n+1)-g(n)| \leqslant 2$ for any n,

$$
\sum_{\substack{n \leq x \\ n \in S}}|g(n+1)-g(n)| \leqslant 2 \sum_{\substack{n \leq x \\ n \in S}} 1=o(x) .
$$

This and (1.4) complete the proof.
Put $S_{k}(q)=\left(q^{k}-1\right) /(q-1)=q^{k-1}+\cdots+1$, where q is an even integer and k is a positive integer, and consider the sequence $\left\{q^{k} m+S_{k}(q)\right\}_{m=1}^{\infty}$. Since q and $q^{k-1} m+S_{k-1}(q)$ are relatively prime if $k \geqslant 2$, we have

$$
g\left(q^{k} m+S_{k}(q)-1\right)=g(q) g\left(q^{k-1} m+S_{k-1}(q)\right),
$$

and so from our lemma follows:

$$
\sum_{m \leqslant x}\left|g\left(q^{k} m+S_{k}(q)\right)-g(q) g\left(q^{k-1} m+S_{k-1}(q)\right)\right|=o(x),
$$

$(k \geqslant 2)$. From this follows

$$
\begin{equation*}
\sum_{m \leqslant x}\left|g\left(q^{s} m+S_{s}(q)\right)-g(q)^{s-1} g(q m)\right|=o(x), \tag{2.1}
\end{equation*}
$$

where s is an arbitrary positive integer, because

$$
\begin{aligned}
\sum_{m \leqslant x} \mid g & \left(q^{s} m+S_{s}(q)\right)-g(q)^{s-1} g(q m) \mid \\
& \leqslant \sum_{m<x} \sum_{k=2}^{s}\left|\left\{g\left(q^{k} m+S_{k}(q)\right)-g(q) g\left(q^{k-1} m+S_{k-1}(q)\right)\right\} g(q)^{s-k}\right| \\
& =o(x) .
\end{aligned}
$$

Now we set $m=S_{s}(q)\left\{S_{s}(q) q n+1\right\}, n \geqslant 1$. It is easily seen that $S_{s}(q)$ and $q^{s}\left(S_{s}(q) q n+1\right)+1$ are relatively prime and so are any two of the three numbers, $q^{s}, S_{s}(q)$ and $S_{s}(q) q n+1$. Then, we obtain

$$
\begin{aligned}
g\left(q^{s} m+S_{s}(q)\right) & =g\left\{q^{s}\left(S_{s}(q)\right)\left(S_{s}(q) q n+1\right)+S_{s}(q)\right\} \\
& =g\left(S_{s}(q)\right) g\left\{q^{s}\left(S_{s}(q) q n+1\right)+1\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
g(q)^{s-1} g(q m) & =g(q)^{s-1} g\left\{q\left(S_{s}(q)\right)\left(S_{s}(q) q n+1\right)\right\} \\
& =g(q)^{s} g\left(S_{s}(q)\right) g\left(S_{s}(q) q n+1\right) .
\end{aligned}
$$

From (2.1) follows then

$$
\begin{equation*}
\sum_{n \leqslant x}\left|g\left\{q^{s}\left(S_{s}(q) q n+1\right)+1\right\}-g\left(S_{s}(q) q n+1\right) g(q)^{s}\right|=o(x) \tag{2.2}
\end{equation*}
$$

But, since our lemma shows also that

$$
\sum_{n \leqslant x}\left|g\left\{q^{s}\left(S_{s}(q) q n+1\right)+1\right\}-g\left(q^{s}\left(S_{s}(q) q n+1\right)\right)\right|=o(x)
$$

we get from (2.2) that

$$
\sum_{n \leqslant x}\left|g\left(q^{s}\right)-g(q)^{s}\right|\left|g\left\{q^{s}\left(S_{s}(q) q n+1\right)\right\}\right|=o(x)
$$

Consequently, since $|g(n)|=1$ for any integer, we get

$$
\sum_{n \leqslant x}\left|g\left(q^{s}\right)-g(q)^{s}\right|=o(x),
$$

and this means: $g\left(q^{s}\right)=g(q)^{s}$ for any even integer q and for any positive integer s. Put $q=2$, then $g\left(2^{s}\right)=g(2)^{s}$. And put $q=2 p$, where p is an odd prime, then we have $g\left((2 p)^{s}\right)=g(2 p)^{s}$, and since $|g(2)| \neq 0, g\left(p^{s}\right)$ $=g(p)^{s}$. This completes the proof of the theorem.

From this theorem, we can deduce the following corollary, which includes the result of F. Skof's as a special case and is closely connected to the problem solved by I. Kátai.

Corollary. Suppose $f(n)$ is a complex-valued additive arithmetical function, S is a sequence of density zero, and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{n \leq x \\ n \notin S}}|f(n+1)-f(n)|=0 \tag{2.3}
\end{equation*}
$$

Then $f(n)$ is completely additive.
Proof. Since $\operatorname{Re}(f(n))$, $\mathbf{I m}(f(n))$ are also additive and satisfy the similar condition as (2.3), it is sufficient to deal with a real-valued additive function $f(n)$. Put, for z real,

$$
\exp (i z f(n))=g(n, z)
$$

Then by our theorem and the inequality,

$$
\left|e^{i z f(n+1)}-e^{i z f(n)}\right| \leqslant 2|z||f(n+1)-f(n)|,
$$

we can deduce that $g(n, z)$ is completely multiplicative, i.e. $g\left(p^{s}, z\right)$ $=g(p, z)^{s}$ for every z, p and s. By derivation in z, we have $f\left(p^{s}\right)$ $=s f(p)$.

References

[1] P. Erdös: On the distribution function of additive functions. Ann. of Math., 47, 1-20 (1946).
[2] I. Kátai: On a problem of P. Erdös. J. of Number Theory, 2, 1-6 (1970).
[3] F. Skof: Sulle funzioni $f(n)$ arithmetiche additive asintotiche a $c(\log n)$. Ist Lombardo Accad. Sci. Lett. Rend. A, 103, 931-938 (1969).

[^0]: *) C.N.R.S. (France) and Institute of Statistical Mathematics, Tokyo.
 **) Department of Mathematics, Tokyo Metropolitan University.

