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1. Introduction. Le M be an n-dimensional Riemannian
manifold, g its Riemannian metric and 3 the Laplace operator associ-
ated to g. If M is compact, it is well known that 3 is essentially self-
adjoint in L(M, dx), where dx is the volume element associated to g.
Also the spectrum a(z) of z consists of only isolated eigenvalues with
finite multiplicities. On the other hand, if M is not compact, z/ has
in general many selfadjoint extensions, and the spectrum may contain
continuous part or eigenvalues with infinite multiplicities. In the
first case, under a deformation of a Riemannian metric, the eigenvalues
move continuously in a certain sense. In this note we concern our-
selves with essential spectrum of z/ for a non-compact manifold. We
show the following

Theorem. Let (M, g) be a Riemannian manifold. Assume that
is essentially selfad]oint. Let gl be another Riemannian metric

which is different from g only on a compact subset K of M. Then,
(i) zl, is also essentially selfad]oint in L2(M, d,x),
(ii) the essential spectrum of is contained in the spectrum

a(d,) of
Here the essential selfadjointness of d means that the closure d

in L(M, dx)of d acting on C(M) is selfadjoint. In this case, it is
easy to show that it coincides with the extension of d in the sense of
distribution, that is, the domain D of ] consists of those e L(M, dx)
such that d e L(M, dx).

For selfadjoint operators the spectrum can be divided into two
parts, the one consisting o$ all isolated eigenvalues with finite multi-
plicities and the other, remaining set, called the essential spectrum.
The following proposition is known (see [3, p. 518]).

Proposition. Let be in the essential spectrum of a selfadjoint
operator A on a Hilbert space H. Then there exists an orthonormal
sequence {xn}_l in H such that

2. Proof of the theorem. For e L2(M, dx) we denote its norm
by IIll. Let U be an open subset of M such that the closure U is
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compact. We denote by H(U) the Sobolev space of degree two. This
is defined as follows" Let {(U, )} be a finite number of coordinate
systems such that each U is compact and that the union ) U covers
U. Also le e C(U) be such that 0 and VU, where V
={x e U; (x)>0}. For e C(U) the H(U)-norm, ]]]]v, is defined
as follows"

The space H(U) is the completion o C(U) with respect to this norm.
By (. ].) we denote the inner product determined by g in the

cotangent space T(M) at x e M.
Now let us prove the theorem.
The assertion (i) is proved immediately by applying an a priori

estimate in H(U), where U is compact and UK"

Let us prove the assertion (ii) in our steps.
I. Let be in the essential spectrum o. Ten by the proposi-

tion in 1, there exists an orthonormal sequence {}, e L(M, dx),
such that
(2.2)

II. For e C(M), let U be an open subset of M such that
Usupp [] and U is compact. We show that
(2.3) sup

In fact, we have
(2.4)
almost everywhere in M, and de means the exterior derivative
Let e C(M) be such that 1 on a neighborhood V of supp [] and
that supp [] U. Then we have or almost all x e M,
(2.5)
because the first inequality is just the Schwarz inequality, nd or the
second equality, ()(x)=(x)for x e V, and all terms are zero for
x e supp []. Thus we get from (2.4) and (2.5) the ollowing inequality

+211] I]ll sup (dld)/.
From this and (2.1) we can see that (2.3) holds.

III. Let e C(M) be such that =1 on the compact set K, and
we assume that in II is equal to 1 on supp []. Since the injection
rom H(U) into L(M, dx) is compact, we see rom (2.3) that there
exists a subsequence {} of {} such that
(2.7) ]0 (n),
and that 2or some 500
(2.8) 2

We show
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(2.9) (z/q--2)(;) --.0 (n--.c).
In fact, we have as in II,
(2.10) I1(--,)(;)1]<1](--),1 sup ]]+]] sup ](--)()]

+2 () sup (d@ld)/.
From this together with (2.2), (2.4), (2.6) and (2.7) we see that

(2.9) holds.
IV. Finally, since =1 on the compact set K,

(2.) (-)[(-z)] (,-)[(-Z)n] 10.
This shows that (1-Z)= is in the domain of Aq and with (2.8) 2 is not
contained in the resolvent set of

Example. For M=R with g standard, it is known that has
only continuous spectrum and a(A)=R+. So, under any change of g
on a bounded set, the spectrum remains to be R+, because of the posi-
tive definiteness of Laplace operators.

3. Essential selfadjointness of . In this section, as an ex-
ample which satisfies the assumption in our theorem, we show an out-
line of a proof of the essential selfadjointness of , when M is com-
plete.

First we introduce notations.
(1) L=L(M, dx), L" the Hilbert space of 1-forms, its inner

product is (., .)=[ (. l.)dx and we denote the norm by .
dM

(2) A {; e C(M) L, de e L}.
’B={; is a smooth 1-form, e L, $ e Lz}, where is the

(3) formal adjoint of d.
,B0={; is a smooth, compactly supported 1-form}.

[D { e L C(M), e L}.
(4) D, {; e L, Z e L, de e L}.

[Dw= {; e L, 3 e L}.
d0 is d acting on C:(M). (0 is Aq acting on C(M).
d is d acting on A. is acting on D.

(5)
$0 is $ acting on B0. ] is acting on D.
$ is acting on B1 ( is acting on D.

The proof is done by showing the following (a)-(e).
(a) 0= and 30=3, where means the closure of each operator.
(b) d=3, where d is the adjoint operator of d.
(c) =3, and so is selfadjoint.
(d) =.
(e) 3=3.
These show that is selfadjoint. Also we have .=, and so

=($)*, that is, A.=A0. This means that 0 is essentially self-
adjoint.
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To prove (a)-(e), we use the following two lemmas.
Lemma 1. Let Xo be a fixed point of M, and p(x) the geodesic

distance from Xo to x. Then,
(i) p(x) is a locally Lipschitz continuous function,
(ii) for almost all x e M, (dp] dp)x <= dim M.
Lemma 2. Assume that (M,g) is complete. Then for C eDw

(This is called "Stampacchia’s inequality", see [2, Proposition 3, p.
322].)

Now, (a) is proved by making use of Lemma 1 and the complete-
ness of M. (b) was shown in [1] under a general condition, which is
satisfied because of (a). (c) is deduced rom (b). (d) is a direct con-
sequence of Lemma 2. (e) is a standard property of elliptic operators.
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