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96. Calculus on Gaussian White Noise. II

By Izumi KUBO and Shigeo TAKENAKA
Department of Ma,thematics, Faculty of Science,

Nagoya University

(Communicated by K,Ssaku YOSIDA, M. $. A., Nov. 12, 1980)

We are going to reformulate the works of Hida [1], [2] to establish
a calculus on generalized Brownian functionals which we cM1 Hida
calculus.

In Part I [11], we have prepared fundamental tools. By using
them, we will discuss on generalized random variables, annihilation
operators 3, creation operators 3*, multiplications x(t). and so forth.

5. Generalized random variables. As assumed in 4 of
Part I [11], let T be a separable metrizable space with a a-finite Borel
measure v and put Eo=L(T, ). Let be dense subset of E0 which
has a consistent sequence of inner products {(, ) p0} such that
(5.1) (,)p(,),+, or p0 with p, 0pl.
Let E, be the completion of by the norm ]p and E_,=E with
($, )_, be the dual of Ep. Suppose that is identical to the projective
limit E of E. Then the dual C* is the inductive limit E_ of E_.
Throughout this note we assume that the injection 0, from E to E0
is traceable; that is, V (t) belongs to E_ and the mapping t e T

E_ is continuous, and assume that][ 1d(t). Thent
dT

by Lemma 4.2, the injection 0, is a Hilbert-Schmidt operator. There-
ore, by Gelfand-Minlos-Sazanov’s theorem, we have

Theorem 5.1. There exists a probability measure on * such
that

8"
e<’>dz(x) exp l for e .

Definition 5.2. The measure Z on* is called a measure of Gaus-
sian white noise. The L-space L(*, p) is denoted by (L), simply.

It is well known that the measure p is quasi-invariant under the
shift xx- or e and that

(5.2) d"(x-)=exp[<x} 1 ]dp(x) -- l e Lq(*, )

or q1 [7]. With the result, we can define a transformation by

(5.3) ()() =_.[8. (x+ $)dz(x), e , e Lq(*, ), 1q .
Remark 5.. By (5.2) and (5.3), () (]) can be extended to an

entire function of as follows;
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(5.4) (q)()-- (x) exp (x,- [111 d/, e 6’.

Hence, the analytic continuation ()(i) satisfies

(5.5) ()(i)--(ff)() exp - IIllg

where ff is the transformation introduced by Hida-Ikeda [5];

(5.6) ()() _.I. e<’)(x)d/(x)"
Let /() be the Hilbert space o unctionals of e spanned by {e<’,>
2 e } (see 3 of Part I) with inner product
(5.7) (e<,,>, e<:,>)() =exp [(2, )].

Theorem 5.4. The space (L) is isomorphic to
By (3.2) of Part I, /(+’)c/()c5/

for p_>0, and induce inner product (,),, on J(() from the inner
product of (). Let J((-) be the dual of ((), p>0. Then we have
inclusions.

(=(()c... c(()c...
(5.8)

=(L)c.. cj((_)c...

Definition 5.5. We say that an element of 4(* is a generalized
random variable and that ( is the space of testing random variables.

Lemma 5.6. (i) (} in (() converges to ? weakly, if and only
if it is bounded in S(() and (3)() converges to (37)() for each

(ii) If (} is bounded in W((), p>_ 1 (or p=0), and if (3)() con-
verges for each e , then it converges strongly in (L)=(() (or in
4((- ’), respectively).

Lemma 5.7. Suppose that is a nuclear space. Then
(i) {} in J( converges strongly in 4(, if and only if it is bounded

in 4( and (3n)() converges for each
(ii) the same assertion holds in
The Hermite polynomials with parameter are defined by the

generating function

(5.9) exp [tu-- 2
t] --=o -. Hn(u )"

Remark 5.8. Our Hermite polynomial H(u; a) is equal to Kaku-
tani’s one up to n! [8], in particular

Hn(U O)--Un, H0(u; a)= 1,

Hn(0; o0 (2n) (_a)n and H./(0 a)=0.
n!2

Lemma 5.9. We have the following formulae
(H(<., ]> )e<’,>)()=H((+
(H((., ]) ]ll))()-($, ]).

6. Derivatives and their duals. Let be in J(, then ()() is
in by definition. By Theorem 4.4 of Part I, the functional deriva-
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rive /(t) is a continuous operator on . Ther.efore we can define
continuous operator 3/3x(t) on J( by

=3- (3)().(6.)
x(t) (t)

Theorem 6.1. (i) The operator 3/3x(t) is continuous on and
strongly continuous in t and satisfies

(=(),(; t) Io e ,
x(t) ,,

(ii) The dl operator (3/3x(t))* is continuous on* and strongly
continuous in t and

]*]($):(t)(3)($) for e* and e e,
3x(t)

1(1 p)- 1.

x(t) X(t)
By Theorem 6.1, we can define operators A(f) on ( and A*(f)

on (* by

A(f)=r d,(t). d,(t)f(t, t)3t," 3t,

A*(f)=r d,(t). d,(t)f(t, t)3. 3t*,
for f in E=,(T, d).

Theorem 6.2. For o e (, e (* and f e (R), we have
( ) (q(A(f)))()= ((q)()( .), f},

][A(f)ll,,, _llf[l_ I[11+, (1-p)-(+)/p/m !.
(ii) (3(A*(f)))()= (f, }(3)(),

llA*(f)ll,,, <_llftl IIll,+, (l--p)-<+’)z/- !.
(iii) , A(f)): (A*(f), ) nd {A(f), ):, A*(f)).
(iv) A(f)A(g)-A(fg) and A*(f)A*(g)=A*(fg),

A(f)A*(g)-A*(g)A(f)=(f g)o, if f, g e .
Remark 6.3. By this theorem, A(f), for f e E(R), can be regarded

as continuous operators on both spaces J( and J(*. Further, A(F),
for F e E*(R), can be defined as a continuous operator on J( while
A*(F) is defined as a continuous operator on (*. In particular for F
in E=L(T,,), A*(F)I is in (L).

By the theorem together with Theorems 3.1 and 4.4, we have
Lemma 0.4. Let f be in E(R) and put =A*(f)l. Then
(Gg)() (f,} and 1, (f,}I1,. m fl

For simplicity, denote

(6.2) 3-
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hold.

and

Furthermore for m k,. _ m! A*(*t,. f)l.
(m- k)

Theorem 6.5. Let o be in J(, then
_1A,((Sp)()(0=:0 k!

;’))

IIoIIL)--- I(O)(’(O ,’’" ,)1 d()...d,(t).
k=O

Remark 6.6. As in Remark 4.5, a’" " can be regarded as an
operator-valued --rom (-) to (--)-- generalized function.

7. Multiplication and normal ordering. By Theorem 6.3, the
operators and can be regarded as operator-valued generalized
unctions on . The commutation relations (iv) in Theorem 6.2 can
be written in the following more symbolical forms;

(7.1)

The relations are so-called the canonical commutation relations. Ac-
cording to the terminology in quantum field theory, is called a crea-
tion operator and is an annihilation operator at t.

Remark 7.1. Since (x) and (x) in are random variables in
(Lg, the product ()(x)=(x)(x) is a random variable, at least be-
longing to L(*, ). Later we will see that

Theorem 7.2. Define x(t).

}=]r d,(t)(t)x(t).=(A()+A*()),
x(t).e=A*(nf)+A*(tf)l, or e=A*(f).

Let us use the notation of the normal ordering :P" for polynomials
P of and ’s (see [9], [10]). Then the ollowing lemma is useful.

Lemma 7..
(i) :x(t)...x(t)..=

A{,...,n} jeA

:x(t)... x(t). 1=. 1,

(ii) x(t). x(t), l= E E ," ,
k=0 + ++A0= {1,...,n} j0

where =(t) if
Define a mapping from into (n+-) for OkgnAm

min {n, m} by
f@()g(u, ..., u+_)

1 J" f(u(), ’’.,U(n_),V,’’’,(7.3)
(n

g(u(_+), ..., u(+_), v, ..., v)d,(v),
here n+- is the symmetric group of order (n+m-2k).
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Theorem 7.4. Let f be in (R) and g be in n, then
(i) IIf(R)()gl(,/-.)_llfll
(ii) put (x)=A*(f). 1 and (x)=A*(g). 1, then

n m A*(f()g). 1(x)(x)= 0 k (n--k) (m-k)= d,(t). d,(t)g(t, ..., t) x(t,). X(tn)"
JT

(iii) (())()
k (n- k)

=5 1 I (3);(;t,

k=O 2
Theorem 7.. L ad b ig , hg blog8 o ad

holds yor suciently large q such

(ii) ((f))() ((Sf)’( .), ()’( .)).
Theorem 7.6. The mlt@lieatio oerator

Le U() be in if, then U can be extended to a continuous -fune-
ional U(z) on g*. By heorem 8.1, there exists a =(fo,’", f,"’)
e ee such

(7.4) U(x): E
0

The multiplication by U(x) coincides with the operator

(7.5) U(x).
0

and its normal ordering is given by

.u(x). .= .(x%f .= A*(f.).
n=O 0

Therefore, we have
Theorem 7.7. If U() is in , then U can be extended to a con-

tinuous functional U(x) on *. Furthermore U(x) is in and satisfies
3( U(x). :1)()= U().
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