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96. Calculus on Gaussian White Noise. II

By Izumi KUBO and Shigeo TAKENAKA
Department of Mathematics, Faculty of Science,
Nagoya University

(Communicated by Kdsaku YosIiDpA, M. J. A., Nov. 12, 1980)

We are going to reformulate the works of Hida [1], [2] to establish

a calculus on generalized Brownian functionals which we call Hida
calculus.

In Part I [11], we have prepared fundamental tools. By using
them, we will discuss on generalized random variables, annihilation
operators 8,, creation operators o¥, multiplications x(¢)- and so forth.

8§ 5. Generalized random wvariables. As assumed in §4 of
Part I [11], let T be a separable metrizable space with a ¢-finite Borel
measure v and put E,=L¥T,v). Let & be a dense subset of E, which
has a consistent sequence of inner products {(§, 7),; p>0} such that
5.1 (¢,8),<p& 8),.1, for p>0 with p, 0<p<1.

Let E, be the completion of £ by the norm | ||, and E_,=E} with
(&,79)_, be the dual of E,. Suppose that £ is identical to the projective
limit E., of E,. Then the dual &* is the inductive limit __ of E'_,.
Throughout this note we assume that the injection ¢, , from E, to E|
is traceable; that is, §,: &—&(t) belongs to E_, and the mapping te T

—d, € E_, is continuous, and assume that || 5| ZEI [|6,|%1 dv(t)<oo. Then
T

by Lemma 4.2, the injection ¢, , is a Hilbert-Schmidt operator. There-
fore, by Gelfand-Minlos-Sazanov’s theorem, we have

Theorem 5.1. There exists a probability measure p on &* such
that

L;* 6“0 du(x) =exp [—% |I$II3], for&eé&.

Definition 5.2. The measure ;on &* is called a measure of Gaus-
stan white noise. The L*-space L*(E*, p) is denoted by (L?), simply.

It is well known that the measure x is quasi-invariant under the
shift x—xz—¢& for £ € £ and that

dp(x—§) _ IR TP
5.2) D —exp [<2 &> 2nsno]eL<8*,m

for ¢>1 [7]. With the result, we can define a transformation S by
6.3 SPO=|  o@+9du@), el peliEnp, 1<q<e.

Remark 5.3. By (5.2) and (5.3), (Sp) (1¢) can be extended to an
entire function of 2 as follows;
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GO Spuo=[ @ exm|a@ L ieh]an,  cec.

Hence, the analytic continuation (S¢)(i¢) satisfies

(5.5) (SP(E8)=(Tp)(e) exp [é— lels].
where 9 is the transformation introduced by Hida-Ikeda [5];
(5.6) @O = eop@iu.

Let 4 be the Hilbert space of functionals of ¢ € £ spanned by {e"®;
n €&} (see § 3 of Part I) with inner product
5.7 (e, e©)® =exp [(y, 0),].

Theorem 5.4. The space (L? is isomorphic to F© by S.

By (3.2) of Part I, F**CFP»CF® for p>1. Put H»=8(F®)
for p>0, and induce inner product (,) g on H® from the inner
product of ¥, Let 4 be the dual of 4», p>0. Then we have
inclusions.

ﬂ[zﬂ(w)c e Cﬂ(?)c, .. Cﬂ(O)
(5.8 =LHC . - CHPCT . C Y= = g[*,
Definition 5.5. We say that an element of 4* is a generalized
random variable and that 4 is the space of testing random variables.

Lemma 5.6. (i) {p,} in H® converges to ¢ weakly, if and only
if it is bounded in H™ and (Sp,)(&) converges to (Sp)(&) for each &€ &.

(i1) If {.} s bounded in I, p>1 (or p=0), and if (Sp,)(&) con-
verges for each &€&, then it converges strongly in (L)=H® (or in
Y, respectively).

Lemma 5.7. Suppose that & is o nuclear space. Then

(1) {p.} in I converges strongly in 9, if and only if it is bounded
mn I and (Sp,)(€) converges for each & ¢ &,

(ii) the same assertion holds in 9(*.

The Hermite polynomials with parameter « are defined by the
generating function

o B .
(5.9) exp [tu—gt ] =3 L Hww.

Remark 5.8. Our Hermite polynomial H,(u; «) is equal to Kaku-

tani’s one up to n! [8], in particular
H,(u;0)=u", Hyu;x=1,
Ho0;0) =200 (—a) and H,.,0;9)=0.

Lemma 5.9. We have the following formulae

SH, K5 np 5 a)e ) ) =H, (C+&, 7)o ; a—||p[e® o0l
SH K- 95 17IDNE) = (&, .

§6. Derivatives and their duals. Let ¢ be in 4, then (Sp)(®) is

in F by definition. By Theorem 4.4 of Part I, the functional deriva-
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tive §/64(t) is a continuous operator on F. Therefore we can define a
continuous operator 9/6x(t) on 4 by
0 ]
(6.1) =81 (Sp)(®).
oM 550 0)(8)
Theorem 6.1. (i) The operator 8/0x(t) is continuous on H and
strongly continuous in t and satisfies

3 e
(SW) O=(Se®(E:t)  forpe K,

d
ox(t) <lia.l- win oP(A—0)7 1
H ax(t)g"’w, <81 el gg o 7A— 0%
(ii) The dual operator (3/0x(t))* is continuous on I* and strongly
continuous in t and

(S(%(t))*w)(g) —e@®)(ST)E) for Ted* and Ee&,

0 )* ‘ ) ]
v <UBNa 1T ]| grmpan 0P~ 11— D)1
H(ax(t) 'j(f—w_” - 1%l g " '1—p")
For simplicity, denote

0 2 \*
6.2 3,=—9 _ and a*:( ) .
©2) @ 0 T\
By Theorem 6.1, we can define operators A(f) on 4 and A*(f)
on 9J(* by

AD=[ @) At S st D1

AN dlt)- - Bt S o 8I33E
for f in E$m=L*(T™, dy™).
Theorem 6.2. For pe 4, U e I* and f e EE™, we have
(1) (SAWDNE=LS)™E; ), 1,
LAl gy <ULl @ grovn (L= )+ 97pm 0T,
(i)  (SEA*(NHN@E =L, 5N (Sp)(®),
IA* (Nl g <11 T llsm ] g (L— =m0 0T,
(i) <, ANy =<{A*(NT, ¢y and (AT, oy =¥, A*()p).
(iv) A(NA(9)=A(fRg) and A*(f)A*(g)=A*(f&g),
ANAX () —ANPAN=(f, 9,  if f,9€&.
Remark 6.3. By this theorem, A(f), for f € E®™, can be regarded
as continuous operators on both spaces 4 and 4(*. Further, A(F),
for F ¢ E*®™, can be defined as a continuous operator on .4 while
A*(F) is defined as a continuous operator on 4(*. In particular for F'
in E§m=L(T™,v™), A*(F)1 is in (LY.
By the theorem together with Theorems 3.1 and 4.4, we have
Lemma 6.4. Let f be in E®™ and put e=A*(N1. Then
S@ =S, 8 and oy w=I|I<S) & [Gm=m! I1F Iizom
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hold. Furthermore for m>k,
O+ dup= _k)vA*(5 - OENL.
Theorem 6.5. Let ¢ be in K, then
o= 3, AT (Sp0; N1
and

oty = iij ((SP®O; by - -, b du(E)- - - dulty).
k=0 k! Jor*

Remark 6.6. As in Remark 4.5, 9,,- - -9,, can be regarded as an
operator-valued —from 4*-? to 9{‘-?~P— generalized function.

§ 7. Multiplication and normal ordering. By Theorem 6.3, the
operators 9, and 0 can be regarded as operator-valued generalized
functions on £. The commutation relations (iv) in Theorem 6.2 can
be written in the following more symbolical forms;

0,05 —050,=0,(t),
@1 0,0,—0,0,=0f0* —0a}o}F=0.
The relations are so-called the canonical commutation relations. Ac-
cording to the terminology in quantum field theory, 9} is called a crea-
tion operator and 9, is an annihilation operator at t.

Remark 7.1. Since ¢(x) and v(x) in 4 are random variables in
(LY, the product (pv)(x)=p(@)¥(x) is a random variable, at least be-
longing to L'(€*, ). Later we will see that ¢y is in 4(.

Theorem 7.2. Define x(t)- =0,+ 0}, then for o€ I, ne &,

@, o= ab®a-o=(Aw+A* G,

@(t)- p=A*¥WSF )1+ A*O,Rf )1,  for p=A*(f)1.
Let us use the notation of the normal ordering :P: for polynomials
P of 3, and 0¥’s (see [9], [10]). Then the following lemma is useful.
Lemma 7.3.

1) @) -w) = 20 [ ] 8

AC{L,eee, n} j€4 1€ {1, ,mi\

()2t 1 a;';---a;;l,
(i) @) --2(t,) 1= Z 2. 541'”54,01161 0%

=0 di+-oe+dp+do={1,+,n}
where §,=6,(t,) if 4={k, m}
Define a mapping from & x £%™ into £&+m-2 for 0<k<nAm
=min {n, m} by
J®u gy - -+ y U —2i)
1
(n+m 2[0)' oe@n+m 2k
X 9WUyin_ps1ys ** * s Ugtnam—ziers V1y = * *» ViAW (D),
here &, ,,_,. is the symmetric group of order (n+m—2k).

(1.3) f F @ty -+ Uin oo D+ V)
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Theorem 7.4, Let f be in £ and g be in £, then
(1) 1/ @ llsbrsn-s<]| £ lsbm | g s 0*,
(ii) put p(x)=A*(f)-1 and y(x)=A*(g)-1, then

e n!m! .
VD= St et 2w ]

=ij dy(tl)' . -dv(tn)g(tl’ ceey, tn): x(tl)' .. x(tn). . ‘0,
A nlm! A “
(1) (Sle)® = 2, (®g, 8 rm-20y

(
= St
X(SOOE; by -+, LI,
. nAm 2 2p-2\k
@) lpvlgm <27 2 (LN ol g 1o

Theorem 7.5. Let ¢ and  be in I{, then oy belongs to H and

(1) ”SD‘,"”‘%‘(P’ £5 ”$0”‘_4[w+q) ||\!/‘||j((p+q>
holds for sufficiently large q such that (4+|6|)p?<1,

(D) (SO = 2L (S Es 0, (SN E; D

Theorem 7.6. The multiplication operator ¢- : y—pr s continu-
ous and symmetric on 4. For ¢ and € Y, we have
0(¥) = @0, + 0,0,
F () =@ 0F — (0p) - .
Let U(€) be in &, then U can be extended to a continuous 4-func-
tional U(x) on £*. By Theorem 3.1, there exists a £=(fy, -+, [ny -+ *)
e e8¢ such that

7.4) U@)=3 <@ fu)-

The multiplication by U(x) coincides with the operator
(1.5) U@) =3, <a®, 1.+,

and its normal ordering is given by

(7.6) V@) 1=3, (@, 1, 1= 3, A*(T).

Therefore, we have
Theorem 7.7. If U(®) isin F, then U can be extended to a con-
tinuous functional U(x) on £*. Furthermore U(x) is in Y and satisfies
SC:U@)- :1)(&)=U().
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