10. A Reciprocity Law in Some Relative Quadratic Extensions

By Hideji Ito

Department of Mathematics, Akita University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1980)

Introduction. Let E be an elliptic curve defined over Q, and ℓ a rational prime $(\neq 2)$. Put $E_{\ell} = \{a \in E \mid \ell a = 0\}$ and $K_{\ell} = Q(E_{\ell})$, i.e. the number field generated over Q by all the coordinates of the points of order ℓ on E. K_{ℓ} contains a subfield K'_{ℓ} which is generated over Q by all the x-coordinates of the points of order ℓ on E. The degree of K_{ℓ}/K'_{ℓ} is 1 or 2, and usually the latter is the case, for example, when $\operatorname{Gal}(K_{\ell}/Q) \cong \operatorname{GL}_2(Z/\ell Z)$ or when E has complex multiplication (see Remark in § 2).

The aim of this note is to investigate the law of decomposition of primes in these extensions K_{ℓ}/K'_{ℓ} .

Let p be a good prime for E. Put $\pi=\pi_p$ be the Frobenius endomorphism of $E \mod p$, and $a_p = \operatorname{tr}(\pi)$, where trace is taken with respect to the ℓ -adic representation of $E \mod p$. Then the main result of this note is the following: If $\left(\frac{p}{\ell}\right) = -1$, then the relative degree of $\mathfrak p$ (=any extension of p to K'_ℓ) in K_ℓ/K'_ℓ coincides with the absolute degree of ℓ in $Q(\sqrt{a_p^2-4p})/Q$. One might say that this is some sort of reciprocity law, although in case $\left(\frac{p}{\ell}\right) = 1$ that cannot always hold.

- § 1. The following two fields are contained in K_{ℓ} :
- i) $Q(\zeta_{\ell})$, where ζ_{ℓ} is a primitive ℓ -th root of unity,
- ii) $M_{\ell} = Q(j_1, j_2, \dots, j_{\ell+1})$, where j_{ℓ} 's are the j-invariants of elliptic curves which are ℓ -isogenous to E, in other words, M_{ℓ} is the splitting field of the modular equation $J_{\ell}(X, j(E)) = 0$, where j(E) is the j-invariant of E.

Both of them are Galois extensions of Q. Put $G = \operatorname{Gal}(K_{\ell}/Q)$. Then we can identify G with a subgroup of $\operatorname{GL}_2(Z/\ell Z)$. And the corresponding subgroups for $Q(\zeta_{\ell})$ and M_{ℓ} by the Galois theory are

$$S = G \cap \operatorname{SL}_2(Z/\ell Z), \qquad H = G \cap \{aI \mid a \in (Z/\ell Z)^*\},$$

where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, respectively.

Proposition 1. 1) $K'_{\ell}=M_{\ell}(\zeta_{\ell})$, 2) $M_{\ell}\cap Q(\zeta_{\ell})\supset Q(\sqrt{\pm \ell})$. Here we take $+\ell$ when $\ell\equiv 1\pmod 4$ and $-\ell$ when $\ell\equiv 3\pmod 4$.

Proof. 1) Note that K'_{ℓ} corresponds to $G \cap \{\pm I\}$ and $\operatorname{SL}_{2}(Z/\ell Z)$

 $\bigcap \{aI | a \in (Z/\ell Z)^*\} = \{\pm I\}. \ \ 2) \ \text{Put } N = \{A \in \operatorname{GL}_2(Z/\ell Z) | \det A \in (Z/\ell Z)^2\}.$ Then we see easily that $Q(\sqrt{\pm \ell})$ corresponds to $N \cap G$ and N contains $\operatorname{SL}_2(Z/\ell Z)$ and $\{aI | a \in (Z \in \ell Z)^*\}.$ So $N \cap G \supset SH.$ This means $Q(\sqrt{\pm \ell}) \subset M_\ell \cap Q(\zeta_\ell).$ Q.E.D.

When $G \cong \operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$, we have $M_{\ell} \cap \mathbb{Q}(\zeta_{\ell}) = \mathbb{Q}(\sqrt{\pm \ell})$. But there are cases where $M_{\ell} \supset \mathbb{Q}(\zeta_{\ell})$. See Serre [3, p. 309].

Letting f_0 , f_1 and f' be the absolute degrees of P in $Q(\zeta_{\ell})$, M_{ℓ} and K'_{ℓ} respectively, we have the following

Corollary. $f' = \langle f_0, f_1 \rangle$, i.e. the least common multiple of f_0 and f_1 .

As is well-known, f_0 is the smallest positive integer a for which $p^a \equiv 1 \pmod{\ell}$ holds. From the action of π on $(E \mod p)_\ell = \{a \in E \mod p \mid \ell a = 0\} \cong \mathbb{Z}/\ell \mathbb{Z} \oplus \mathbb{Z}/\ell \mathbb{Z}$, we can represent π by a matrix $S(\pi)$ in $\operatorname{GL}_2(\mathbb{Z}/\ell \mathbb{Z})$ and the characteristic polynomial of $S(\pi)$ is $X^2 - a_p X + p$. Considering the Jordan normal form of $S(\pi)$, if $\ell \nmid (a_p^2 - 4p)$, then f_1 is the smallest positive integer b such that the characteristic polynomial of $S(\pi^b)$ has multiple roots in $F_\ell = \mathbb{Z}/\ell \mathbb{Z}$. If $\ell \mid (a_p^2 - 4p)$, then f_1 is 1 or ℓ according as $\ell \mid (\mathfrak{o} \colon \mathbb{Z}[\pi])$ or not (here $\mathfrak{o} = \operatorname{End}_{F_p}(E \mod p)$, see [1, Theorem 1]). Let f be the absolute degree of p in K_ℓ/Q and put $k = Q(\sqrt{a_p^2 - 4p})$.

Proposition 2. Suppose $\ell \nmid (a_p^2 - 4p)$. If ℓ splits in k/\mathbf{Q} , then f_1 and f divide $\ell - 1$, while if ℓ remains prime in k/\mathbf{Q} , then f_1 divides $\ell + 1$.

Proof. Our assumptions mean that X^2-a_pX+p splits into two different linear factors or is irreducible over F_{ℓ} . In the former case, $S(\pi)$ is conjugate to $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a,b\in F_{\ell}$, $a\neq b$. So $S(\pi)^{\ell-1}=$ identity. In the latter case, $S(\pi)$ is conjugate to $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a,b\in F_{\ell^2}-F_{\ell}$. As a is conjugate to b over F_{ℓ} , we have $a^{\ell+1}=$ Norm of a relative to $F_{\ell^2}/F_{\ell}=b^{\ell+1}\in F_{\ell}$. So f_1 divides $\ell+1$. Q.E.D.

§ 2. For a natural number $n=2^ab$, $2\nmid b$, we put e(n)=a.

Theorem 1. The following three cases occur.

- (i) If $e(f_0) \neq e(f_1)$, then f = 2f'.
- (ii) If $e(f_0) = e(f_1) > 0$, then f = f'.
- (iii) If $e(f_0)=e(f_1)=0$, that is, both f_0 and f_1 are odd, then we have both cases. If $a_p=a$ gives f=f', then in case $a_p=-a$ we have f=2f' (and vice versa).

Proof. In any case as $[K_{\ell}: K'_{\ell}] = 1$ or 2, we know that f = f' or 2f'. Note that in the cases (i) and (ii), $f' = \langle f_0, f_1 \rangle$ is even by Corollary of Proposition 1.

(i) Suppose $e(f_0) > e(f_1)$. Then $f_1|(f'/2)$, $f_0 \nmid (f'/2)$. Hence if

 $S(\pi^{f'})=$ identity, then $S(\pi^{f'/2})=\begin{pmatrix} a & 0 \ 0 & a \end{pmatrix}$, $a^2=\det S(\pi^{f'/2})=-1$, $a\in F_\ell$. But then, as $S(\pi^{f'})=\begin{pmatrix} a^2 & 0 \ 0 & a^2 \end{pmatrix}$, we have $a^2=1$. This is a contradiction. So f=2f'.

(i)' Suppose $e(f_0) < e(f_1)$. Then $f_0|(f'/2), f_1 \not\mid (f'/2)$. So, if $S(\pi^{f'}) = \mathrm{id.}$, then $S(\pi^{f'/2})$ is conjugate to $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a \neq b$, ab = 1, $a, b \in F_t$. As $S(\pi^{f'}) = \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} = \mathrm{id.}$, we have $a^2 = b^2 = 1$. Hence $1 = ab = a^2$. Therefore a(a-b) = 0, a contradiction.

(ii) Suppose $S(\pi'') \neq \text{id}$. As $S(\pi^{2f'}) = \text{id}$., we have $S(\pi^{f'}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Since f' is even and both f_0 and f_1 do not divide f'/2, we see that $S(\pi^{f'/2})$ is conjugate to $\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$, $c, d \in F_i$, $c^2 = d^2 = -1$, $c \neq d$, cd = -1. Hence $c^2 = -1 = cd$. So we have c(c-d) = 0. A contradiction.

(iii) Note that f_0 and f_1 (and hence f') take the same value for $a_p = \pm a$. Take $A, B \in \operatorname{GL}_2(F_\ell)$ which satisfy $\operatorname{tr} A = -\operatorname{tr} B$ and $\det A = \det B = p$. Suppose the orders of their images into $\operatorname{PGL}_2(F_\ell)$ coincide. What we have to show is that if A has order m then B has order 2m or m/2 according as $2 \nmid m$ or $2 \parallel m$. But, for odd n, we easily see that

 $\operatorname{tr}(A^n) = \operatorname{tr}(A)^n - np \operatorname{tr}(A^{n-2}) - \binom{n}{2} p^2 \operatorname{tr}(A^{n-4}) - \cdots - np^{(n-1)/2} \operatorname{tr}(A).$ Hence by induction we get $\operatorname{tr}(A^n) = -\operatorname{tr}(B^n)$. So our assertion is clear. This completes our proof.

Proposition 3. If ℓ remains prime in $Q(\sqrt{a_p^2-4p})$, then the case (ii) in Theorem 1 never occurs.

Proof. If $\ell \mid (a_p^2 - 4p)$, then $f_1 = 1$ or ℓ . So the assertion is clear. Now suppose $\ell \nmid (a_p^2 - 4p)$. Then $S(\pi)$ is conjugate to $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a, b \in F_{\ell^2} - F_{\ell}$, $a \neq b$. If $e(f_0) = e(f_1) > 0$, then by Theorem 1 we have $S(\pi^{f'}) = i$ dentity. So $a^{f'} = b^{f'} = 1$. As f' is even and both f_0 and f_1 do not divide f'/2, we have $\{a^{f'/2}, b^{f'/2}\} = \{+1, -1\}$. But a is conjugate to b over F_{ℓ} , so their orders in F_{ℓ}^* must coincide. This is a contradiction.

Remark. As an application of Theorem 1, we can show that if E has complex multiplication (say by $\sqrt{-q}$) we have $K_{\ell} \neq K'_{\ell}$ for all $\ell > 2$ and $\ell \neq q$. Indeed, put $k_0 = Q(\sqrt{-q})$. Let p be a prime which remains prime in k_0 and satisfies $p \equiv 1 \pmod{\ell}$. Then $a_p = 0$ and the order f_0 of p in F_{ℓ}^* is 1. Hence $f_1 = 2$ and $e(f_1) > e(f_0) = 0$. So the case (i) occurs. This means that $K_{\ell} \neq K'_{\ell}$.

§ 3. When $\left(\frac{p}{\ell}\right) = -1$, we have the following simple decomposition law of primes.

Theorem 2. Suppose $\left(\frac{p}{\ell}\right) = -1$. Then the relative degree of \mathfrak{p} (=any prime in K'_{ℓ} lying above p) in K_{ℓ}/K'_{ℓ} coincides with the absolute degree of ℓ in $\mathbf{Q}(\sqrt{a_p^2-4p})/\mathbf{Q}$.

Proof. By our assumption, we see $\ell
mathcal{e} (a_p^2 - 4p)$ and both f_0 and f_1 are even. Indeed, by Proposition 1, $M_\ell \cap Q(\zeta_\ell) \supset Q(\sqrt{\pm \ell})$. If $\ell \equiv 1 \pmod 4$, then $\left(\frac{\ell}{p}\right) = \left(\frac{p}{\ell}\right) = -1$. When $\ell \equiv 3 \pmod 4$, we easily see that

 $\left(\frac{-\ell}{p}\right)=-1$. Now put $k=Q(\sqrt{a_p^2-4p})$. Suppose $\ell\equiv 3\pmod 4$. Then we clearly have $e(f_0)=1$. If ℓ remains prime in k, then by Proposition 3 the case (ii) of Theorem 1 never occurs, so the case (i) occurs (by the way, this means especially that $4|f_1\rangle$. If ℓ splits in k, then by Proposition 2, $f_1|(\ell-1)$. Therefore $e(f_1)=1$. So we have the case (ii).

Now suppose $\ell \equiv 1 \pmod{4}$. If 2^n exactly divides $\ell-1$, then $e(f_0) = n \ge 2$, because $\left(\frac{p}{\ell}\right) = -1$. If ℓ remains prime in k, then by Prop-

osition 2, $f_1|(\ell+1)$, so $e(f_1)=1$. Hence the case (i) occurs. If ℓ splits in k, then $f|(\ell-1)$. Assume $f=2f'=2\langle f_0,f_1\rangle$. Then 2^{n+1} divides f, because $e(f_0)=n$. So we have $2^{n+1}|(\ell-1)$, a contradiction. Therefore we must have f=f'. This completes the proof of our theorem.

§ 4. We can explain the reason why in the case both f_0 and f_1 are odd (and only in that case) the relation between f and f' cannot be determined in terms of f_0 and f_1 (as in Theorem 1, (iii)).

First note that K'_{ℓ} is unchanged when we replace E with any other C-isomorphic elliptic curves/Q, while K_{ℓ} is not. Suppose A is an elliptic curve_Q which is C-isomorphic to E, but is not Q-isomorphic to E. Put $L_{\ell} = Q(A_{\ell})$. If $j(E) \neq 0$, 1728, then over some quadratic field $Q(\sqrt{d})$, $d \in Z$, they become isomorphic. Hence $K_{\ell}(\sqrt{d}) = L_{\ell}(\sqrt{d})$. By a simple reasoning, when f' is even, we see that any prime $\mathfrak p$ of K'_{ℓ} lying above p always splits in $K'_{\ell}(\sqrt{d})/K'_{\ell}$. Therefore the decomposition of $\mathfrak p$ in K_{ℓ}/K'_{ℓ} agrees with that in L_{ℓ}/K'_{ℓ} . If f' is odd and p splits in $Q(\sqrt{d})$, then the situation is the same as before, but when f' is odd and p remains prime in $Q(\sqrt{d})$, the decomposition of $\mathfrak p$ in K_{ℓ}/K'_{ℓ} differs from that in L_{ℓ}/K'_{ℓ} , because above $\mathfrak p$ remains prime in $K'_{\ell}(\sqrt{d})/K'_{\ell}$.

References

- [1] H. Ito: A note on the law of decomposition of primes in certain galois extension. Proc. Japan Acad., 53A, 115-118 (1977).
- [2] S. Lang: Elliptic Functions. Addison Wesley, Reading (1973).
- [3] J. P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math., 15, 259-331 (1972).