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Introduction. Let E be an elliptic curve defined over Q, and a
rational prime (=/=2). Put E,={aeElga--O} and K=Q(E), i.e. the
number field generated over Q by all the coordinates of the points of
order g on E. K, contains a subfield K which is generated over Q by
all the x-coordinates of the points of order g on E. The degree of
K,/K is 1 or 2, and usually the latter is the case, for example, when
Gal (K,/Q)-GL. (Z/#Z) or when E has complex multiplication (see
Remark in 2).

The aim of this note is to investigate the law of decomposition of
primes in these extensions K,/K.

Let p be a good prime for E. Put --u, be the Frobenius endo-
morphism of E mod p, and a=tr (), where trace is taken with
respect to the g-adic representation of E mod p. Then the main result

of this note is the following" If ()-----1, then the relative degree

of p (-any extension of p to K) in K,/K coincides with the absolute
degree of g in Q(/a-4p)/Q. One might say that this is some sort

o, ecio oci   a , i. ca.oo a wa   ol .

1o The following two fields are contained in K,:
i) Q(,), where , is a primitive -th root of unity,

ii) M,= Q(], ], ., ],/), where ],’s are the ]-invariants of
elliptic curves which are -isogenous to E, in other words, M is the
splitting field of the modular equation J,(X, ](E))--0, where ](E) is the
]-invariant of E.

Both of them are Galois extensions of Q. Put G=Gal (K,/Q).
Then we can identify G with a subgroup of GL (Z/Z). And the
corresponding subgroups for Q() and M, by the Galois theory are

S=GSL(Z/Z), H=GV{allae(Z/Z)*},

where I= (01 10), respectively.

Proposition 1. 1) K=M,(,), 2) M,Q(,)Q(/+_). Here
we take -t- when gl (mod 4) and - when ----3 (mod 4).

Proof. 1) Note that K corresponds to G { +I} and SL (Z/gZ)
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{aI[a (Z/Z)*)--{+_I}. 2) Put N--{A GL. (Z/Z)[det A (Z/Z)}.
Then we see easily that Q(/_+) eorresponds to N G G and N contains
SL (Z/Z) and {aI[a (Z Z)*}. So N V G SH. This means

When G-GL(Z/Z), we have MQ(5)=Q(/+_D. But there
are cases where MQ(). See Serre [3, p. 309].

Letting f0, f and f’ be the absolute degrees of P in Q(5), M and
K respectively, we have the ollowing

Corollary. ff =(fo, f}, i.e. the least common multiple of fo and

As is well-known, f0 is the smallest positive integer a for which
p----1 (mod t) holds. From the action of on (Emodp)=(a
e E mod p lga 0} -Z/ZZ/gZ, we can represent z by a matrix S(z)
in GL. (Z/gZ) and the characteristic polynomial of S() is X-aX+p.
Considering the Jordan normal orm of S(z), i 2(a-4p), then f is
the smallest positive integer b such that the characteristic polynomial
of S(z) has multiple roots in F=Z/Z. If 1 (a-4p), then f is 1 or
2 according as gl(o: Z[u]) or not (here o=End (Emodp), see [1,
Theorem 1]). Let f be the absolute degree o p in K/Q and put
k=Q(/a-4p).

Proposition 2. Suppose (a-4p). If splits in k/Q, then f
and f divide -1, while if remains prime in k/Q, then f divides
g+l.

Proof. Our assumptions mean that X--aX+p splits into two
different linear factors or is irreducible over F. In the former case,

S()isconjugateto( ), a, beFe, a=/=b. So S()e-=identity. In

thelatter case, S(u)is conjugate to ( ), a, be Fe--Fa. As a is con-

jugate to b over F, we have ae+=Norm of a relative to F/F=b+
e Fe. So f, divides g + 1. Q.E.D.

2. For a natural number n=2b, 2Xb, we put e(n)=a.
Theorem 1. The following three cases occur.
( If e(fo)=/=e(f,), then f=2f’.
(ii) If e(fo) e(f,) > O, then f f’.
(iii) If e(fo)=e(fO=O, that is, both fo and f are odd, then we

have both cases. If a=a gives f f’, then in case a=-a we have
f=2f’ (and vice versa).

Proof. In any case as [Ke’Kfl=l or 2, we know that f=f’ or
2f’. Note that in the cases (i) and (ii), f’= (f0, f} is even by Corollary
of Proposition 1.

( i ) Suppose e(fo) > e(f,). Then fl(f’/2), foX(f’/2). Hence if
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( On)a2--detS(]’/2): 1, neFf. ButS(Z)= identity, then S(Z/)=

then, as S(uZ)= we have a= 1. This is a contradiction. So

f-2f’.
( )’ Suppose e(f0)<e(f). Then f01(f’/2), A(f’/2). So,

S(u’)=id., then S(uz/) is conjugate to ( ), ab, ab=l, a, be

As S(uz’) id., we have a b 1. Hence 1 ab a.
Therefore a(a-b)=O, a contradiction.

(ii) Suppose S(uz’)id. As S(u’)=id., we have S(uz’)

=(1- --21). Since f’ is even and both f0 and f do not divide f’/2,.

wesee that S(u’/) is conjugate o (
ed= 1. Hence e= 1= eg. So we have e(e- g) 0. A contradic-
tion.

(iii) Noe ha fo and f (and hence f’) take he same value. ake A, B e G(F) which satisfy r A -r B and de A
=de B=f. Suppose he orders of heir images into PGL (F) eoin-
eide. Wh we have o show is h if A hs order m hen B
order 2m or m/ according as 2m or m. Bu, for odd , we easily
see

Hence by induction we ge r (A)=-r (B). So our assertion is
clear. his eomlees our

Proposition 3. I g emai ime i (e-4p), the the
(ii) i Theorem 1 ever

Proof. If g l(-), then f=l or g. So he assertion is elear.

-F, eCb. If e(fo)=e(f)>O, hen by heorem 1 we have S(z)
=ideniy. So ’=bZ=l. As f’ is even and both.f0 and f do not
divide f’/, we have {’/, b’/}={+l,-1}. Bu e is conjugate o b
over Fe, so their orders in mus coincide. his is a contradiction.

.N.D.
Remark. As an aplieaion of heorem 1, we can show ha

N has complex multiplication (say by 4) we have KeK for all
g>2 and gq. Indeed, u 0=(). Le be a prime which
remains rime in nd satisfies 1 (mod g). hen ,=0 and
order f0 of in F is 1. Hence f 2 and e(f)> e(fo)= 0. So he
(i) occurs. his means he KK.
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When [-)=-1, we have the following simple decomposition

law of primes.

Theorem2. Suppose ()=-l. Then the relative degree of p

(=any prime in K lying above p) in K/K coincides with the absolute
degree of in Q(/a-dp)/Q.

Proof. By our assumption, we see $(a-dp) and both f0 and
are even. Indeed, by Proposition 1, MQ(5)Q(/+_--). If

(mod 4), then ()=()--1. When g--3 (rood 4), we easily see that

( -)=-1. Now put k=Q(/-dp). Suppose g-3 (modd). Then
P

we clearly have e(f0)= 1. If g remains prime in k, then by Proposition
3 the case (ii) of Theorem 1 never occurs, so the case (i) occurs (by the
way, this means especially that 41f). If g splits in k, then by Prop-
osition 2, fl(g- 1). Therefore e(f)- 1. So we have the case (ii).
Now suppose 1 (modd). If 2 exactly divides g-l, then e(fo)

--n>__2, because ()=-1. Ifg remains prime in k, then by Prop-

osition 2, f](g/ 1), so e(f)= 1. Hence the case (i) occurs. If splits
in k, then f (-1). Assume f=2f’=2(fo, f}. Then 2 / divides f,
because e(fo)=n. So we have 2/l(g-1), a contradiction. Therefore
we must have f f’. This completes the proof of our theorem.

4. We can explain the reason why in the case both f0 and f are
odd (and only in that case) the relation between f and f’ cannot be
determined in terms of f0 and f (as in Theorem 1, (iii)).

First note that K is unchanged when we replace E with any
other C-isomorphic elliptic curves/Q, while K is not. Suppose A is
an elliptic curve/ which is C-isomorphic to E, but is not Q-isomorphic
to E. Put L=Q(A). If ](E)=/=O, 1728, then over some quadratic

field Q(/d ), d e Z, they become isomorphic. Hence K(/d )=L(/-).
By a simple reasoning, when f’ is even, we see that any prime p o
K lying above p always splits in K(/-)/K. Therefore the decom-
position of p in K/K agrees with that in L/K. If f’ is odd and p

splits in Q(/d ), tlen the situation is the same as before, but when

f’ is odd and p remains prime in Q(/d ), the decomposition of p in
K/K’ differs from that in L/K, because above p remains prime in
g(/--) /g.
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