10. A Reciprocity Law in Some Relative Quadratic Extensions

By Hideji Ito
Department of Mathematics, Akita University
(Communicated by Shokichi Iyanaga, M. J. A., Jan. 12, 1980)

Introduction. Let E be an elliptic curve defined over \boldsymbol{Q}, and ℓ a rational prime $(\neq 2)$. Put $E_{\ell}=\{a \in E \mid \ell a=0\}$ and $K_{\ell}=\boldsymbol{Q}\left(E_{\ell}\right)$, i.e. the number field generated over \boldsymbol{Q} by all the coordinates of the points of order ℓ on $E . \quad K_{\ell}$ contains a subfield K_{ℓ}^{\prime} which is generated over \boldsymbol{Q} by all the x-coordinates of the points of order ℓ on E. The degree of $K_{\ell} / K_{\ell}^{\prime}$ is 1 or 2 , and usually the latter is the case, for example, when $\operatorname{Gal}\left(K_{\ell} / \boldsymbol{Q}\right) \cong \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$ or when E has complex multiplication (see Remark in § 2).

The aim of this note is to investigate the law of decomposition of primes in these extensions $K_{\ell} / K_{\ell}^{\prime}$.

Let p be a good prime for E. Put $\pi=\pi_{p}$ be the Frobenius endomorphism of $E \bmod p$, and $a_{p}=\operatorname{tr}(\pi)$, where trace is taken with respect to the ℓ-adic representation of $E \bmod p$. Then the main result of this note is the following: If $\left(\frac{p}{\ell}\right)=-1$, then the relative degree of \mathfrak{p} (=any extension of p to K_{ℓ}^{\prime}) in $K_{\ell} / K_{\ell}^{\prime}$ coincides with the absolute degree of ℓ in $\boldsymbol{Q}\left(\sqrt{a_{p}^{2}-4 p}\right) / \boldsymbol{Q}$. One might say that this is some sort of reciprocity law, although in case $\left(\frac{p}{\ell}\right)=1$ that cannot always hold.
§ 1. The following two fields are contained in K_{ℓ} :
i) $\boldsymbol{Q}\left(\zeta_{\ell}\right)$, where ζ_{ℓ} is a primitive ℓ-th root of unity,
ii) $M_{\ell}=\boldsymbol{Q}\left(j_{1}, j_{2}, \cdots, j_{\ell+1}\right)$, where j_{i} 's are the j-invariants of elliptic curves which are ℓ-isogenous to E, in other words, M_{ℓ} is the splitting field of the modular equation $J_{\ell}(X, j(E))=0$, where $j(E)$ is the j-invariant of E.

Both of them are Galois extensions of \boldsymbol{Q}. Put $G=\operatorname{Gal}\left(K_{\ell} / \boldsymbol{Q}\right)$. Then we can identify G with a subgroup of $\mathrm{GL}_{2}(\boldsymbol{Z} / \ell Z)$. And the corresponding subgroups for $\boldsymbol{Q}\left(\zeta_{\ell}\right)$ and M_{ℓ} by the Galois theory are

$$
S=G \cap \mathrm{SL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z}), \quad H=G \cap\left\{a \boldsymbol{I} \mid a \in(\boldsymbol{Z} / \ell \boldsymbol{Z})^{*}\right\}
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, respectively.
Proposition 1. 1) $\left.K_{\ell}^{\prime}=M_{\ell}\left(\zeta_{\ell}\right), ~ 2\right) \quad M_{\ell} \cap \boldsymbol{Q}\left(\zeta_{\ell}\right) \supset \boldsymbol{Q}(\sqrt{ \pm \ell})$. Here we take $+\ell$ when $\ell \equiv 1(\bmod 4)$ and $-\ell$ when $\ell \equiv 3(\bmod 4)$.

Proof. 1) Note that K_{ℓ}^{\prime} corresponds to $G \cap\{ \pm I\}$ and $\mathrm{SL}_{2}(\boldsymbol{Z} / \ell Z)$
$\cap\left\{a I \mid a \in(\boldsymbol{Z} / \ell \boldsymbol{Z})^{*}\right\}=\{ \pm I\}$. 2) Put $N=\left\{A \in \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z}) \mid \operatorname{det} A \in(\boldsymbol{Z} / \ell \boldsymbol{Z})^{2}\right\}$. Then we see easily that $\boldsymbol{Q}(\sqrt{ \pm \ell})$ corresponds to $N \cap G$ and N contains $\mathrm{SL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$ and $\left\{a I \mid a \in(\boldsymbol{Z} \in \ell \boldsymbol{Z})^{*}\right\}$. So $N \cap G \supset S H$. This means $\boldsymbol{Q}(\sqrt{ \pm \ell}) \subset M_{\ell} \cap \boldsymbol{Q}\left(\zeta_{t}\right)$.
Q.E.D.

When $G \cong \mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$, we have $M_{\ell} \cap \boldsymbol{Q}\left(\zeta_{\ell}\right)=\boldsymbol{Q}(\sqrt{ \pm \ell})$. But there are cases where $M_{\ell} \supset \boldsymbol{Q}\left(\zeta_{\ell}\right)$. See Serre [3, p. 309].

Letting f_{0}, f_{1} and f^{\prime} be the absolute degrees of P in $\boldsymbol{Q}\left(\zeta_{\ell}\right), M_{\ell}$ and K_{ℓ}^{\prime} respectively, we have the following

Corollary. $\quad f^{\prime}=\left\langle f_{0}, f_{1}\right\rangle$, i.e. the least common multiple of f_{0} and f_{1}.

As is well-known, f_{0} is the smallest positive integer a for which $p^{a} \equiv 1(\bmod \ell)$ holds. From the action of π on $(E \bmod p)_{\ell}=\{a$ $\in E \bmod p \mid \ell a=0\} \cong \boldsymbol{Z} / \ell \boldsymbol{Z} \oplus \boldsymbol{Z} / \ell \boldsymbol{Z}$, we can represent π by a matrix $S(\pi)$ in $\mathrm{GL}_{2}(\boldsymbol{Z} / \ell \boldsymbol{Z})$ and the characteristic polynomial of $S(\pi)$ is $X^{2}-a_{p} X+p$. Considering the Jordan normal form of $S(\pi)$, if $\ell \nmid\left(a_{p}^{2}-4 p\right)$, then f_{1} is the smallest positive integer b such that the characteristic polynomial of $S\left(\pi^{b}\right)$ has multiple roots in $\boldsymbol{F}_{\ell}=\boldsymbol{Z} / \ell \boldsymbol{Z}$. If $\ell \mid\left(a_{p}^{2}-4 p\right)$, then f_{1} is 1 or ℓ according as $\ell \mid(\mathfrak{0}: Z[\pi])$ or not (here $\mathfrak{0}=\operatorname{End}_{F_{p}}(E \bmod p)$, see [1, Theorem 1]). Let f be the absolute degree of p in $K_{\ell} / \boldsymbol{Q}$ and put $k=\boldsymbol{Q}\left(\sqrt{a_{p}^{2}-4 p}\right)$.

Proposition 2. Suppose $\ell \nmid\left(a_{p}^{2}-4 p\right)$. If ℓ splits in k / Q, then f_{1} and f divide $\ell-1$, while if ℓ remains prime in k / \boldsymbol{Q}, then f_{1} divides $\ell+1$.

Proof. Our assumptions mean that $X^{2}-a_{p} X+p$ splits into two different linear factors or is irreducible over \boldsymbol{F}_{ℓ}. In the former case, $S(\pi)$ is conjugate to $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), a, b \in \boldsymbol{F}_{\ell}, a \neq b$. So $S(\pi)^{\ell-1}=$ identity. In the latter case, $S(\pi)$ is conjugate to $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), a, b \in \boldsymbol{F}_{\ell^{2}}-\boldsymbol{F}_{\ell} . \quad$ As a is conjugate to b over \boldsymbol{F}_{ℓ}, we have $a^{\ell+1}=$ Norm of a relative to $\boldsymbol{F}_{\ell 2} / \boldsymbol{F}_{\ell}=b^{\ell+1}$ $\in \boldsymbol{F}_{\ell}$. So f_{1} divides $\ell+1$.
Q.E.D.
§2. For a natural number $n=2^{a} b, 2 \nmid b$, we put $e(n)=a$.
Theorem 1. The following three cases occur.
(i) If $e\left(f_{0}\right) \neq e\left(f_{1}\right)$, then $f=\mathbf{2 f}$.
(ii) If $e\left(f_{0}\right)=e\left(f_{1}\right)>0$, then $f=f^{\prime}$.
(iii) If $e\left(f_{0}\right)=e\left(f_{1}\right)=0$, that is, both f_{0} and f_{1} are odd, then we have both cases. If $a_{p}=a$ gives $f=f^{\prime}$, then in case $a_{p}=-a$ we have $f=2 f^{\prime}$ (and vice versa).

Proof. In any case as [$K_{\ell}: K_{\ell}^{\prime}$]=1 or 2 , we know that $f=f^{\prime}$ or $2 f^{\prime}$. Note that in the cases (i) and (ii), $f^{\prime}=\left\langle f_{0}, f_{1}\right\rangle$ is even by Corollary of Proposition 1.
(i) Suppose $e\left(f_{0}\right)>e\left(f_{1}\right)$. Then $f_{1} \mid\left(f^{\prime} / 2\right), f_{0} \nmid\left(f^{\prime} / 2\right)$. Hence if
$S\left(\pi^{f^{\prime}}\right)=$ identity, then $S\left(\pi^{f^{\prime} / 2}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), a^{2}=\operatorname{det} S\left(\pi^{f^{\prime / 2}}\right)=-1, a \in \boldsymbol{F}_{\ell} . \quad$ But then, as $S\left(\pi^{f^{\prime}}\right)=\left(\begin{array}{cc}a^{2} & 0 \\ 0 & a^{2}\end{array}\right)$, we have $a^{2}=1$. This is a contradiction. So $f=2 f^{\prime}$.
(i) Suppose $e\left(f_{0}\right)<e\left(f_{1}\right)$. Then $f_{0} \mid\left(f^{\prime} / 2\right), f_{1} \nmid\left(f^{\prime} / 2\right)$. So, if $S\left(\pi^{f^{\prime}}\right)=$ id., then $S\left(\pi^{f^{\prime / 2}}\right)$ is conjugate to $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), a \neq b, a b=1, a, b \in \boldsymbol{F}_{\ell}$. As $S\left(\pi^{f^{\prime}}\right)=\left(\begin{array}{cc}a^{2} & 0 \\ 0 & b^{2}\end{array}\right)=$ id., we have $a^{2}=b^{2}=1$. Hence $1=a b=a^{2}$. Therefore $a(a-b)=0, a$ contradiction.
(ii) Suppose $S\left(\pi^{f^{\prime}}\right) \neq \mathrm{id}$. As $S\left(\pi^{2 f^{\prime}}\right)=\mathrm{id}$., we have $S\left(\pi^{f^{\prime}}\right)$ $=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. Since f^{\prime} is even and both f_{0} and f_{1} do not divide $f^{\prime} / 2$, we see that $S\left(\pi^{f^{\prime} / 2}\right)$ is conjugate to $\left(\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right), c, d \in F_{\ell}, c^{2}=d^{2}=-1, c \neq d$, $c d=-1$. Hence $c^{2}=-1=c d$. So we have $c(c-d)=0$. A contradiction.
(iii) Note that f_{0} and f_{1} (and hence f^{\prime}) take the same value for $a_{p}= \pm a$. Take $A, B \in \mathrm{GL}_{2}\left(F_{\ell}\right)$ which satisfy $\operatorname{tr} A=-\operatorname{tr} B$ and $\operatorname{det} A$ $=\operatorname{det} B=p$. Suppose the orders of their images into $\mathrm{PGL}_{2}\left(\boldsymbol{F}_{\ell}\right)$ coincide. What we have to show is that if A has order m then B has order $2 m$ or $m / 2$ according as $2 \nmid m$ or $2 \| m$. But, for odd n, we easily see that

$$
\operatorname{tr}\left(A^{n}\right)=\operatorname{tr}(A)^{n}-n p \operatorname{tr}\left(A^{n-2}\right)-\binom{n}{2} p^{2} \operatorname{tr}\left(A^{n-4}\right)-\cdots-n p^{(n-1) / 2} \operatorname{tr}(A) .
$$

Hence by induction we get $\operatorname{tr}\left(A^{n}\right)=-\operatorname{tr}\left(B^{n}\right)$. So our assertion is clear. This completes our proof.

Proposition 3. If ℓ remains prime in $\boldsymbol{Q}\left(\sqrt{a_{p}^{2}-4 p}\right)$, then the case (ii) in Theorem 1 never occurs.

Proof. If $\ell \mid\left(a_{p}^{2}-4 p\right)$, then $f_{1}=1$ or ℓ. So the assertion is clear. Now suppose $\ell \nmid\left(a_{p}^{2}-4 p\right)$. Then $S(\pi)$ is conjugate to $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), a, b \in \boldsymbol{F}_{\ell 2}$ $-\boldsymbol{F}_{\varepsilon}, a \neq b$. If $e\left(f_{0}\right)=e\left(f_{1}\right)>0$, then by Theorem 1 we have $S\left(\pi^{f^{\prime}}\right)$ $=$ identity. So $a^{f^{\prime}}=b^{f^{\prime}}=1$. As f^{\prime} is even and both f_{0} and f_{1} do not divide $f^{\prime} / 2$, we have $\left\{a^{f^{\prime} / 2}, b^{f^{\prime} / 2}\right\}=\{+1,-1\}$. But a is conjugate to b over \boldsymbol{F}_{ℓ}, so their orders in $\overline{\boldsymbol{F}}_{\ell}^{*}$ must coincide. This is a contradiction. Q.E.D.

Remark. As an application of Theorem 1, we can show that if E has complex multiplication (say by $\sqrt{-q}$) we have $K_{\ell} \neq K_{\ell}^{\prime}$ for all $\ell>2$ and $\ell \neq q$. Indeed, put $k_{0}=\boldsymbol{Q}(\sqrt{ } \overline{-q})$. Let p be a prime which remains prime in k_{0} and satisfies $p \equiv 1(\bmod \ell)$. Then $a_{p}=0$ and the order f_{0} of p in F_{ℓ}^{*} is 1 . Hence $f_{1}=2$ and $e\left(f_{1}\right)>e\left(f_{0}\right)=0$. So the case (i) occurs. This means that $K_{\ell} \neq K_{\ell}^{\prime}$.
§3. When $\left(\frac{p}{\ell}\right)=-1$, we have the following simple decomposition law of primes.

Theorem 2. Suppose $\left(\frac{p}{\ell}\right)=-1$. Then the relative degree of \mathfrak{p} (=any prime in K_{ℓ}^{\prime} lying above p) in $K_{\ell} / K_{\ell}^{\prime}$ coincides with the absolute degree of ℓ in $\boldsymbol{Q}\left(\sqrt{a_{p}^{2}-4 p}\right) / \boldsymbol{Q}$.

Proof. By our assumption, we see $\ell \nmid\left(a_{p}^{2}-4 p\right)$ and both f_{0} and f_{1} are even. Indeed, by Proposition 1, $M_{\ell} \cap \boldsymbol{Q}\left(\zeta_{\ell}\right) \supset \boldsymbol{Q}(\sqrt{ \pm \ell})$. If $\ell \equiv 1$ $(\bmod 4)$, then $\left(\frac{\ell}{p}\right)=\left(\frac{p}{\ell}\right)=-1$. When $\ell \equiv 3(\bmod 4)$, we easily see that $\left(\frac{-\ell}{p}\right)=-1 . \quad$ Now put $k=\boldsymbol{Q}\left(\sqrt{a_{p}^{2}-4 p}\right) . \quad$ Suppose $\ell \equiv 3(\bmod 4)$. Then we clearly have $e\left(f_{0}\right)=1$. If ℓ remains prime in k, then by Proposition 3 the case (ii) of Theorem 1 never occurs, so the case (i) occurs (by the way, this means especially that $4 \mid f_{1}$). If ℓ splits in k, then by Proposition $2, f_{1} \mid(\ell-1)$. Therefore $e\left(f_{1}\right)=1$. So we have the case (ii). Now suppose $\ell \equiv 1(\bmod 4)$. If 2^{n} exactly divides $\ell-1$, then $e\left(f_{0}\right)$ $=n \geqq 2$, because $\left(\frac{p}{\ell}\right)=-1$. If ℓ remains prime in k, then by Proposition $2, f_{1} \mid(\ell+1)$, so $e\left(f_{1}\right)=1$. Hence the case (i) occurs. If ℓ splits in k, then $f \mid(\ell-1)$. Assume $f=2 f^{\prime}=2\left\langle f_{0}, f_{1}\right\rangle$. Then 2^{n+1} divides f, because $e\left(f_{0}\right)=n$. So we have $2^{n+1} \mid(\ell-1)$, a contradiction. Therefore we must have $f=f^{\prime}$. This completes the proof of our theorem.
$\S 4$. We can explain the reason why in the case both f_{0} and f_{1} are odd (and only in that case) the relation between f and f^{\prime} cannot be determined in terms of f_{0} and f_{1} (as in Theorem 1, (iii)).

First note that K_{ℓ}^{\prime} is unchanged when we replace E with any other \boldsymbol{C}-isomorphic elliptic curves $/ \boldsymbol{Q}$, while K_{ℓ} is not. Suppose A is an elliptic curve ${ }_{/ Q}$ which is C-isomorphic to E, but is not Q-isomorphic to E. Put $L_{\ell}=\boldsymbol{Q}\left(A_{\ell}\right)$. If $j(E) \neq 0,1728$, then over some quadratic field $\boldsymbol{Q}(\sqrt{d}), d \in \boldsymbol{Z}$, they become isomorphic. Hence $K_{\ell}(\sqrt{d})=L_{\ell}(\sqrt{d})$. By a simple reasoning, when f^{\prime} is even, we see that any prime \mathfrak{p} of K_{ℓ}^{\prime} lying above p always splits in $K_{\ell}^{\prime}(\sqrt{d}) / K_{\ell}^{\prime}$. Therefore the decomposition of \mathfrak{p} in $K_{\ell} / K_{\ell}^{\prime}$ agrees with that in $L_{\ell} / K_{\ell}^{\prime}$. If f^{\prime} is odd and p splits in $\boldsymbol{Q}(\sqrt{d})$, then the situation is the same as before, but when f^{\prime} is odd and p remains prime in $\boldsymbol{Q}(\sqrt{ } \bar{d})$, the decomposition of \mathfrak{p} in $K_{\ell} / K_{\ell}^{\prime}$ differs from that in $L_{\ell} / K_{\ell}^{\prime}$, because above \mathfrak{p} remains prime in $K_{\ell}^{\prime}(\sqrt{d}) / K_{\ell}^{\prime}$.

References

[1] H. Ito: A note on the law of decomposition of primes in certain galois extension. Proc. Japan Acad., 53A, 115-118 (1977).
[2] S. Lang: Elliptic Functions. Addison Wesley, Reading (1973).
[3] J. P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math., 15, 259-331 (1972).

