90. On the Linear Sieve. II
By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodarra, m. J. A., Oct. 13, 1980)

1. The purpose of the present note is to show briefly an alternative proof of Iwaniec's remarkable improvement [2] upon the linear sieve of Rosser. Our argument is not much different from Iwaniec's, but, being a straightforward refinement of [3], it is comparatively more direct and easy. Roughly speaking, our procedure is an injection of a smoothing device to Rosser's infinite iteration of the Buchstab identity.

We retain most of the notations of [3], and in addition we introduce the condition Ω_{∞} : For any $3 \leq u<v$

$$
\sum_{u \leq p<v} \delta\left(p^{2}\right) \bar{p}^{-2}=O\left((\log \log u)^{-1}\right)
$$

Then the linear sieve of Iwaniec is, in a modified form,
Theorem. Provided $M N \geq z^{2}, \Omega_{\infty}, \Omega_{2}(1, L), L \leq(\log z) /(\log \log z)$, we have, for $\nu=0$ and 1 ,

$$
\begin{aligned}
& (-1)^{\nu-1}\left\{S(A, z)-\left(\phi_{\nu}\left(\frac{\log M N}{\log z}\right)+O\left((\log \log z)^{-1 / 50}\right)\right) X V(z)\right\} \\
& \quad \leq \log z \operatorname{Max}_{\alpha, \beta}\left|\sum_{m_{\ll N}<N} \alpha_{m} \beta_{n} R_{m n}\right|,
\end{aligned}
$$

where $\left\{\alpha_{m}\right\},\left\{\beta_{n}\right\}$ are variable vectors such that $\left|\alpha_{m}\right| \leq 1,\left|\beta_{n}\right| \leq 1$.
Detailed discussions will be given in [5], and here we indicate only the clues. Note that we have obtained a hybrid of this result (but $\nu=1$ only) with the multiplicative large sieve (see [4]).

Acknowledgement. The present author is very much indebted to his friend Dr. H. Iwaniec for sending him a preprint of the monumental work [2].
2. To state our principal lemmas we introduce the following conventions: We put $z=z_{1} z_{2}^{J}$, where J is a large integer to be specified later. We dissect $\left[z_{1}, z\right)$ into J smaller intervals $\left[z_{1} z_{2}^{j-1}, z_{1} z_{2}^{j}\right.$), and denote one of them generally by I with or without suffix. K with or without suffix stands for the set-theoretic direct product of a sequence of I 's, and $\omega(K)$ be the number of constituent I's. If $K=I_{1} I_{2} \ldots I_{r}$ then $I<K$ means that $(I)<\min \left(I_{j}\right)(j \leq r)$, where (I) is the right end point of I; also $d \in K$ implies that $d=p_{1} p_{2} \cdots p_{r}$ with $p_{j} \in I_{j}, p_{j} \in P$. Note that we do not reject non-squarefree d. Next we define Φ_{ν} and Γ_{ν} $(\nu=0,1)$ to be the characteristic functions of the sets of K such that

$$
\begin{aligned}
\left\{K=I_{1} I_{2} \cdots I_{r} \mid I_{1}>I_{2}>\cdots>I_{r}, \quad\left(I_{1}\right)\left(I_{2}\right) \cdots\left(I_{2 k+\nu-1}\right)\left(I_{2 k+\nu}\right)^{3}\right. & <y \\
& (1 \leq 2 k+\nu \leq r)\}
\end{aligned}
$$

and

$$
\left\{K=I_{1} I_{2} \cdots I_{r} \mid I_{1}>I_{2}>\cdots>I_{r}, \quad r \equiv \nu(\bmod 2), \quad \Phi_{\nu}\left(I_{1} I_{2} \cdots I_{r-1}\right)=1,\right.
$$

$$
\left.\left(I_{1}\right)\left(I_{2}\right) \cdots\left(I_{r-1}\right)\left(I_{r}\right)^{3} \geq y\right\}
$$

respectively. Then generalizing the Rosser truncation of the iteration of the Buchstab identity we get easily

Lemma 1.

$$
\begin{aligned}
S(A, z)= & \sum_{K}(-1)^{\omega(K)} \Phi_{\nu}(K) \sum_{d \in K} S\left(A_{d}, z_{1}\right) \\
& +\sum_{\substack{I, K \\
I<K}}(-1)^{\omega(K)} \Phi_{\nu}(K I) \sum_{\substack{p^{\prime}, j \\
p^{\prime}, j \in I \\
d \in K}} S\left(A_{d p p^{\prime}}, p^{\prime}\right) \\
& +(-1)^{\nu} \sum_{K} \Gamma_{\nu}(K) \sum_{d \in K} S\left(A_{d}, p(d)\right) .
\end{aligned}
$$

Corollary.

$$
\begin{aligned}
&(-1)^{\nu} S(A, z) \geq(-1)^{\nu} \sum_{K}(-1)^{\omega(K)} \Phi_{\nu}(K) \sum_{\substack{d \in K}} S\left(A_{d}, z_{1}\right) \\
&-\sum_{\substack{I, K \\
I N K}} \Phi_{\nu}(K I) \sum_{\substack{p, p^{\prime} \in I \\
p^{\prime} \in K}} S\left(A_{d p p^{\prime}}, z_{1}\right) .
\end{aligned}
$$

Remark. Note that the condition $p^{\prime}<p$ has been dropped out.
With a little effort we can prove the following modification of Lemma 1 of [3]:

Lemma 2. Provided $\Omega_{2}(1, L), z \leq y^{1 / 2(1+\nu)}$, we have, for $\nu=0,1$,

$$
\begin{aligned}
V(z) \phi_{\nu}\left(\frac{\log y}{\log z}\right)= & V\left(z_{1}\right) \sum_{K}(-1)^{\omega(K)} \Phi_{\nu}(K) \sum_{d \in K} \frac{\delta(d)}{d} \phi_{\nu+\omega(K)}\left(\frac{\log y / d}{\log z_{1}}\right) \\
& +O\left\{V(z) \frac{(\log z)^{2}}{\left(\log z_{1}\right)^{3}}\left(L+\left(\log z_{2}\right) \log \left(\frac{\log z}{\log z_{1}}\right)\right)\right\} .
\end{aligned}
$$

Next we state in a slightly more precise form the crucial observation of Iwaniec [2, Lemma 3]:

Lemma 3. Let $y=M N \geq z^{2}$. Then $\Phi_{\nu}(K)=1$ implies that there exists a decomposition $K=K_{1} K_{2}$ such that $\left(K_{1}\right)<M,\left(K_{2}\right)<N$. Also if $\Phi_{\nu}(K I)=1, I<K$ and $\omega(K) \equiv \nu+1(\bmod 2)$, then, since $\Phi_{\nu}(K)=1$, we have a decomposition $K=K_{1} K_{2}$ as above, and at least one of the following three cases occurs: $\left\{\left(K_{1}\right)(I)<M,\left(K_{2}\right)(I)<N\right\},\left\{\left(K_{1}\right)(I)^{2}<M,\left(K_{2}\right)<N\right\}$, $\left\{\left(K_{1}\right)<M,\left(K_{2}\right)(I)^{2}<N\right\}$. Here e.g. $\left(K_{1}\right)$ is the product of (I)'s of I's appearing in K_{1}.
3. Now we indicate the main steps of our proof of the theorem. Set $z_{1}=z^{\iota 2}, z_{2}=z^{\varepsilon 9}$ with $\varepsilon=(\log \log z)^{-1 / 10}$; thus $J \leq(\log \log z)^{9 / 10}$. Also we assume $L \leq(\log z) /(\log \log z)$. By the fundamental lemma (see [1, Lemma 5] for its quick proof) we see that there are two sequences $\left\{h_{\varepsilon}^{(\nu)}\right\}(\nu=0,1)$ such that $h_{\imath}^{(\nu)}=0$ for $\tau \nmid P\left(z_{1}\right)$, and $\left|h_{\tau}^{(\nu)}\right| \leq 1$, and such that uniformly for $d \nmid P\left(z_{1}\right)$

$$
(-1)^{v}\left\{S\left(A_{d}, z_{1}\right)-\frac{\delta(d)}{d} X V\left(z_{1}\right)\left(1+O\left(e^{-H}\right)\right)\right\}
$$

where H is at our disposal. We set $H=\varepsilon^{-1}$, and apply these inequalities to the right side of the corollary to Lemma 1 above. We estimate the resulting main term by appealing to the condition Ω_{∞} and to Lemma 2 above as well as Lemma 2 of [3] (but with more accurate $O\left(L(\log z)\left(\log z_{1}\right)^{-2}\right)$ in the place of $\left.O\left(L(\log y)^{-2 / 5}\right)\right)$. Then the argument of [3] can be carried into our new situation without alternation, except for the choice of B appearing there; here we set $3^{B}=\varepsilon^{-1}$. In this way we get the main term of the theorem. As for the error term we see readily that its absolute value is less than the expression
in which $h_{\tau}^{(j)}=h_{\tau}^{(\nu)}$ if $j \equiv \nu(\bmod 2)$. Then Lemma 3 gives the desired decompositions of d or $d p p^{\prime}$ in these sums. Finally noticing that the number of permissible K is less than $2^{J}<\log z$ we conclude the proof of the theorem.

References

[1] J. Friedlander and H. Iwaniec: On Bombieri's asymptotic sieve. Ann. Scu. Norm. Sup. (Pisa), Cl. Sci. Ser. IV, 4, 719-756 (1978).
[2] H. Iwaniec: A new form of the error term in the linear sieve (to appear in Acta Arith.).
[3] Y. Motohashi: On the linear sieve. I. Proc. Japan Acad., 56A, 285-287 (1980).
[4] -: A note on the large sieve. IV. Ibid., 56A, 288-290 (1980).
[5] -: Lectures on sieve methods and prime number theorems (to appear).

