86. Polynomial Hamiltonians associated with Painlevé Equations. II*)

Differential equations satisfied by polynomial Hamiltonians

By Kazuo Okamoto
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1980)

1. Introduction. The present article concerns the polynomial Hamiltonians associated with the six Painlevé equations. The notation of the previous note [1] will be adopted throughout this paper ; we will refer to the Painlevé equation as $\mathrm{P}_{J}(J=\mathrm{I}, \cdots, \mathrm{VI})$ and denote by H_{J} the polynomial Hamiltonian $\mathrm{H}_{J}(t ; \lambda, \mu)$ associated with P_{J}, given in Table (H) of [1]. Let Ξ_{J} be the set of fixed critical points of P_{J} and let $\tilde{\boldsymbol{B}}_{J}$ be the universal covering surface of $\boldsymbol{B}_{J}=\boldsymbol{P}^{1}(\boldsymbol{C})-\boldsymbol{\Xi}_{J}$. Any solution $(\lambda(t), \mu(t))$ of the Hamiltonian system with the Hamiltonian $\mathrm{H}=\mathrm{H}_{J}$,

$$
\left\{\begin{array}{l}
\lambda^{\prime}=\frac{\partial \mathrm{H}}{\partial \mu} \tag{1}\\
\mu^{\prime}=-\frac{\partial \mathrm{H}}{\partial \lambda}
\end{array}\right.
$$

is meromorphic on $\tilde{\boldsymbol{B}}_{J}$ and so is the function defined by

$$
\begin{equation*}
\mathrm{H}_{J}(t)=\mathrm{H}_{J}(t ; \lambda(t), \mu(t)) \tag{2}
\end{equation*}
$$

The τ-function $\tau=\tau_{J}(t)$ related to $\mathrm{H}_{J}(t)$ is defined by

$$
\begin{equation*}
\mathrm{H}_{J}(t)=\frac{d}{d t} \log \tau_{J}(t) \tag{3}
\end{equation*}
$$

and it is holomorphic on $\tilde{\boldsymbol{B}}_{J}$ ([1]).
2. Equation $\mathrm{P}_{\mathrm{II}{ }^{\prime}}$. Consider firstly the equation
$\mathrm{P}_{\mathrm{III}} \quad \lambda^{\prime \prime}=\frac{1}{\lambda}\left(\lambda^{\prime}\right)^{2}-\frac{1}{t} \lambda^{\prime}+\frac{\lambda^{2}}{4 t^{2}}(\gamma \lambda+\alpha)+\frac{\beta}{4 t}+\frac{\delta}{4 \lambda}$.
We assume that none of γ and δ is zero. In [2], Painlevé showed that $\mathrm{P}_{\mathrm{III}}$ is the limiting form of the equation P_{V} and is transformed to $\mathrm{P}_{\mathrm{III}}$ by the change of variables: $t \rightarrow t^{2}, \lambda \rightarrow t \lambda$. Furthermore, we can derive from H_{V} the polynomial Hamiltonian associated with $\mathrm{P}_{\mathrm{III}}$,
$\mathrm{H}_{\mathrm{III}} \frac{1}{t}\left[\lambda^{2} \mu^{2}-\left(\eta_{\infty} \lambda^{2}+\theta_{0} \lambda-\eta_{0} t\right) \mu+\frac{1}{2} \eta_{\infty}\left(\theta_{0}+\theta_{\infty}\right) \lambda\right]$,
by a process of coalescence. Here the constants in $\mathrm{H}_{\mathrm{III}}$ are related to $\alpha, \beta, \gamma, \delta$ as follows:

$$
\alpha=-4 \eta_{\infty} \theta_{\infty}, \quad \beta=4 \eta_{0}\left(\theta_{0}+1\right), \quad \gamma=4 \eta_{\infty}^{2}, \quad \delta=-4 \eta_{0}^{2}
$$

It follows from the assumption $\gamma \delta \neq 0$ that none of $\eta_{\Delta}(\Delta=0, \infty)$ is zero.

[^0]Proposition 1. System (1) with $\mathrm{H}=\mathrm{H}_{\mathrm{III}}$ governs the isomonodromic deformation of the linear equation

$$
\frac{d^{2} y}{d x^{2}}+p_{1}(x: t) \frac{d y}{d x}+p_{2}(x: t) y=0
$$

where

$$
\begin{aligned}
& p_{1}(x: t)=\frac{\eta_{0} t}{x^{2}}+\frac{1-\theta_{0}}{x}-\eta_{\infty}-\frac{1}{x-\lambda}, \\
& p_{2}(x: t)=\frac{\eta_{\infty}\left(\theta_{0}+\theta_{\infty}\right)}{2 x}-\frac{t \mathrm{H}}{x^{2}}+\frac{\lambda \mu}{x(x-\lambda)} .
\end{aligned}
$$

It is easy to see that properties of the equation $P_{\text {III }}$ are derived from those of the equation $\mathrm{P}_{\mathrm{III}}$, and so we will mainly investigate the equation P_{HI}, Let $\tau_{\mathrm{III}}(t)$ be the τ-function related to the function $\mathrm{H}_{\mathrm{III}}(t)$.

Proposition 2. $\tau_{\mathrm{III}^{\prime}}(t)$ is holomorphic on $\tilde{\mathbf{B}}_{\mathrm{II}^{\prime}}$.
We can suppose, without loss of generality, $\eta_{\Delta}=1$ by changing scales of t and λ. It will be verified by computation that $\lambda_{1}=\mu /(\mu-1)$ satisfies the equation P_{v} with

$$
\alpha=\frac{1}{8}\left(\theta_{0}-\theta_{\infty}\right)^{2}, \quad \beta=-\frac{1}{8}\left(\theta_{0}+\theta_{\infty}\right)^{2}, \quad \gamma=2, \quad \delta=0 .
$$

This fact leads us to
Proposition 3 (cf. [3], [6]). The equation P_{v} with $\delta=0$ is equivalent to the equation $\mathrm{P}_{\mathrm{III}^{\prime}}$ with $\gamma \delta \neq 0$.

Remark 1. In the case when $\gamma=\delta=0$, by substituting λ^{2} for λ and t^{2} for t, we have the equation

$$
\lambda^{\prime \prime}=\frac{1}{\lambda}\left(\lambda^{\prime}\right)^{2}-\frac{1}{t} \lambda^{\prime}+\frac{\alpha \lambda^{3}}{2 t^{2}}+\frac{\beta}{2 \lambda},
$$

that is, the equation $\mathrm{P}_{\mathrm{III}^{\prime}}$ with $\gamma \rightarrow \mathbf{2 \alpha , \delta \rightarrow 2 \beta}$.
3. Differential equations satisfied by the Hamiltonians. By the use of System (1), it will be verified that the function $\mathrm{H}_{J}(t)$ satisfies a non linear differential equation of the second order. The explicit form of this equation E_{J} is given below in Table (E), where we suppose that $\eta_{\Delta} \neq 0$. First we introduce the integer $N(J)$ and the auxiliary constants $\nu_{k}(k=1, \cdots, N(J))$ for the equation P_{J} as follows:

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{II}} & N(\mathrm{II})=1 ; \\
\mathrm{P}_{\mathrm{III}} & N(\mathrm{III})=2 ; \\
& \nu_{1}=\alpha+\frac{1}{2} ; \\
& \bar{\nu}=\left(\frac{1}{2}\left(\theta_{0}+\theta_{\infty}\right), \quad \nu_{2}=\frac{1}{2}\left(\theta_{0}-\theta_{\infty}\right),\right. \\
\left.\mathrm{P}_{\mathrm{III}}\right) & N\left(\frac{1}{2}-\nu_{1}+\nu_{2}\right) ; \\
\mathrm{P}_{\mathrm{IV}} & N(\mathrm{IV})=2 ;
\end{array} \quad \nu_{1}=\frac{1}{2}\left(\theta_{0}+\theta_{\infty}\right), \quad \nu_{2}=\frac{1}{2}\left(\theta_{0}-\theta_{\infty}\right) ; \quad \nu_{1}=\theta_{0}, \quad \nu_{2}=\theta_{\infty} ; \quad, ~ \$
$$

$\mathrm{P}_{\mathrm{v}} \quad N(\mathrm{~V})=3 ; \quad \nu_{1}=\theta_{0}, \quad \nu_{2}=\frac{1}{2}\left(\theta_{0}+\theta_{1}+\theta_{\infty}\right), \quad \nu_{3}=\frac{1}{2}\left(\theta_{0}+\theta_{1}-\theta_{\infty}\right) ;$
$\mathrm{P}_{\mathrm{VI}} \quad N(\mathrm{IV})=4 ; \quad \nu_{1}=\frac{1}{2}\left(\theta_{0}+\theta_{1}\right), \quad \nu_{2}=\frac{1}{2}\left(\theta_{0}-\theta_{1}\right)$, $\nu_{3}=\frac{1}{2}\left(\theta_{t}-1+\theta_{\infty}\right), \quad \nu_{4}=\frac{1}{2}\left(\theta_{t}-1-\theta_{\infty}\right)$, $\sigma_{j}(\nu)=$ the j-th elementary symmetric polynomial of $\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}$, $\sigma_{j}^{0}(\nu)=$ that of $\nu_{1}, \nu_{3}, \nu_{4}$.
Table (E):
$\mathrm{P}_{\mathrm{I}} \quad h=H_{\mathrm{I}}(t)$,
$\mathrm{E}_{\mathrm{I}} \quad\left(h^{\prime \prime}\right)^{2}+4\left(h^{\prime}\right)^{3}+2\left(t h^{\prime}-h\right)=0$:
$\mathrm{P}_{\mathrm{II}} \quad h=\mathrm{H}_{\mathrm{II}}(t)$,
$\mathrm{E}_{\text {II }} \quad\left(h^{\prime \prime}\right)^{2}+4\left(h^{\prime}\right)^{3}+2 h^{\prime}\left(t h^{\prime}-h\right)-\left(\frac{1}{2} \nu_{1}\right)^{2}=0:$
$\mathrm{P}_{\text {IIII }} \quad h=t \cdot \mathrm{H}_{\mathrm{III}}(t)+\left(\frac{1}{2}+\nu_{1}+\nu_{2}\right)^{2}$,
$\mathrm{E}_{\text {III }} \quad\left[\left(t h^{\prime \prime}\right)^{2}+4\left(t h^{\prime}-h\right)\left\{\left(h^{\prime}\right)^{2}-16 \eta_{0} \eta_{\infty}\left(t h^{\prime}-h-\bar{\nu}\right)\right\}\right]^{2}$

$$
+16^{3} \eta_{0}^{2} \eta_{\infty}^{2}\left(1+2 \nu_{2}\right)^{2}\left(t h^{\prime}-h\right)^{3}=0:
$$

$\mathrm{P}_{\mathrm{III}} \quad h=t \cdot \mathrm{H}_{\mathrm{III}}(t)$,
$\mathrm{E}_{\mathrm{III}} \quad\left(t h^{\prime \prime}\right)^{2}-\left[\left(\nu_{1}+\nu_{2}\right) h^{\prime}-\eta_{0} \eta_{\infty} \nu_{1}\right]^{2}+4 h^{\prime}\left(h^{\prime}-\eta_{0} \eta_{\infty}\right)\left(t h^{\prime}-h\right)=0:$
$\mathrm{P}_{\mathrm{IV}} \quad h=\mathrm{H}_{\mathrm{IV}}(t)$,
$\mathrm{E}_{\mathrm{IV}} \quad\left(h^{\prime \prime}\right)^{2}-4\left(t h^{\prime}-h\right)^{2}+4 h^{\prime}\left(h^{\prime}+2 \nu_{1}\right)\left(h^{\prime}+2 \nu_{2}\right)=0:$
$\mathrm{P}_{\mathrm{v}} \quad h=t \cdot \mathrm{H}_{\mathrm{v}}(t)+\nu_{2} \nu_{3}$,
$\mathrm{E}_{\mathrm{v}} \quad\left(\eta_{1} t h^{\prime \prime}\right)^{2}-\left[\eta_{1}^{2}\left(t h^{\prime}-h\right)-2\left(h^{\prime}\right)^{2}-\eta_{1}\left(\nu_{1}+\nu_{2}+\nu_{3}\right) h^{\prime}\right]^{2}$

$$
+4 h^{\prime}\left(h^{\prime}+\eta_{1} \nu_{1}\right)\left(h^{\prime}+\eta_{1} \nu_{2}\right)\left(h^{\prime}+\eta_{1} \nu_{3}\right)=0:
$$

$\mathrm{P}_{\mathrm{vI}} \quad h=t(t-1) \cdot \mathrm{H}_{\mathrm{VI}}(t)+\sigma_{2}^{0}(\nu) t-\frac{1}{2} \sigma_{2}(\nu)$,
$\mathrm{E}_{\mathrm{VI}} \quad h^{\prime}\left[t(t-1) h^{\prime \prime}\right]^{2}+\left[h^{\prime}\left\{2 h-(2 t-1) h^{\prime}\right\}+\sigma_{4}(\nu)\right]^{2}=\prod_{k=1}^{4}\left(h^{\prime}+\nu_{k}^{2}\right)$.
We can represent a solution $(\lambda(t), \mu(t))$ of System (1) with $\mathrm{H}=\mathrm{H}_{J}$ by the function $h=h(t)$ and its derivatives; in fact we have the following

Table (R):
$\mathrm{P}_{\mathrm{I}} \quad \lambda=-h^{\prime}, \quad \mu=-h^{\prime \prime}$:
$\mathrm{P}_{\text {II }} \quad \lambda=\frac{2 h^{\prime \prime}+\nu_{1}}{4 h^{\prime}}, \quad \mu=-2 h^{\prime}$:
$\mathrm{P}_{\mathrm{III}} \quad \lambda=4 \eta_{0} \cdot \frac{h-t h^{\prime}+\left(1 / 2+\nu_{1}+\nu_{2}\right) \sqrt{h-t h^{\prime}}}{h^{\prime} \sqrt{h-t h^{\prime}}-t h^{\prime \prime}}$ $\mu=\frac{1}{4 \eta_{0}} \cdot \frac{h^{\prime} \sqrt{h-t h^{\prime}}-t h^{\prime \prime}}{2 \sqrt{h-t h^{\prime}}}:$
$\mathrm{P}_{\mathrm{III}} \quad \lambda=-\frac{\eta_{0}\left[t h^{\prime \prime}+\eta_{0} \eta_{\infty} \nu_{1}-\left(\nu_{1}+\nu_{2}\right) h^{\prime}\right]}{2 h^{\prime}\left(h^{\prime}-\eta_{0} \eta_{\infty}\right)}, \quad \mu=\frac{1}{\eta_{0}} h^{\prime}:$

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{IV}} \quad \lambda & \lambda \frac{h^{\prime \prime}-2\left(t h^{\prime}-h\right)}{2\left(h^{\prime}+2 \nu_{2}\right)}, \quad \mu=\frac{h^{\prime \prime}+2\left(t h^{\prime}-h\right)}{4\left(h^{\prime}+2 \nu_{1}\right)}: \\
\mathrm{P}_{\mathrm{V}} \quad \lambda & \lambda \frac{\eta_{1} t h^{\prime \prime}-\eta_{1}^{2}\left(t h^{\prime}-h\right)+2\left(h^{\prime}\right)^{2}+\eta_{1}\left(\nu_{1}+\nu_{2}+\nu_{3}\right) h^{\prime}}{2\left(h^{\prime}+\eta_{1} \nu_{2}\right)\left(h^{\prime}+\eta_{1} \nu_{3}\right)}, \\
& \mu=\frac{\eta_{1} t h^{\prime \prime}+\eta_{1}^{2}\left(t h^{\prime}-h\right)-2\left(h^{\prime}\right)^{2}-\eta_{1}\left(\nu_{1}+\nu_{2}+\nu_{3}\right) h^{\prime}}{2 \eta_{1}\left(h^{\prime}+\eta_{1} \nu_{1}\right)}: \\
\mathrm{P}_{\mathrm{VI}} \quad \lambda & =\frac{1}{2 A} \cdot\left[\left(\nu_{3}+\nu_{4}\right) B+\left(h^{\prime}-\nu_{3} \nu_{4}\right) C\right], \\
& \lambda(\lambda-1) \mu=\frac{1}{2 A} \cdot\left[-\left(h^{\prime}-\sigma_{2}^{0}(\nu)\right) B+\left(\sigma_{1}^{0}(\nu) h^{\prime}-\sigma_{3}^{0}(\nu)\right) C\right], \\
& A=\left(h^{\prime}+\nu_{3}^{2}\right)\left(h^{\prime}+\nu_{4}^{2}\right), \\
& B=t(t-1) h^{\prime \prime}+\sigma_{1}(\nu) h^{\prime}-\sigma_{3}(\nu), \\
& C=2\left(t h^{\prime}-h\right) .
\end{array}
$$

By means of this table, we obtain from a solution $h(t)$ of the non linear differential equation E_{J} a pair of functions $(\lambda(t), \mu(t))$, which is a solution of System (1) with the Hamiltonian $\mathrm{H}=\mathrm{H}_{J}$. Therefore, according to (3) we arrive at

Theorem 1. $\tau_{J}(t)$ satisfies a non linear differential equation of the third order and reciprocally a solution $(\lambda(t), \mu(t))$ of System (1) are determined by this function and its derivatives.

Remark 2. Putting for the equation P_{II}

$$
g=h+\lambda \mu-\left(\frac{1}{2}+\nu_{1}+\nu_{2}\right)^{2},
$$

we obtain the following expressions;

$$
\begin{aligned}
& \left(t g^{\prime \prime}-g^{\prime}\right)^{2}-4\left[\left(\nu_{1}+\nu_{2}\right) g^{\prime}-4 \eta_{0} \eta_{\infty} \nu_{1} t\right]^{2}=g^{\prime}\left(g^{\prime}-8 \eta_{0} \eta_{\infty} t\right)\left(4 g-2 t g^{\prime}\right), \\
& \lambda=-4 \eta_{0} \cdot \frac{(1 / 2) t g^{\prime \prime}-\left(1 / 2+\nu_{1}+\nu_{2}\right) g^{\prime}+8 \eta_{0} \eta_{\infty} \nu_{1} t}{g^{\prime}-8 \eta_{0} \eta_{\infty}}, \quad \mu=\frac{1}{4 \eta_{0}} \cdot g^{\prime} .
\end{aligned}
$$

4. Representation of $\lambda(t)$. Now we state the theorem:

Theorem 2. For $\mathrm{P}_{\mathrm{II}}, \cdots, \mathrm{P}_{\mathrm{VI}}$, there exist rational functions, $R_{i}\left(t ; \lambda, \lambda^{\prime}\right)(i=1,2)$ of $\left(t, \lambda, \lambda^{\prime}\right)$ and $a(t), b(t)$ of t such that
(i) for any solution $\lambda(t)$ of P_{J}, the functions

$$
\tau_{i}(t)=\exp \int^{t} R_{i}\left(s ; \lambda(s), \frac{d \lambda}{d s}(s)\right) d s \quad(i=1,2)
$$

are holomorphic on $\tilde{\boldsymbol{B}}_{J}$;
(ii) $\quad a(t), b(t)$ are holomorphic on \boldsymbol{B}_{J} and

$$
\begin{equation*}
a(t) \lambda(t)+b(t)=\frac{d}{d t} \log \frac{\tau_{2}(t)}{\tau_{1}(t)} \tag{4}
\end{equation*}
$$

This fact was firstly remarked by P. Painlevé [5] for $P_{\text {II }}$ and $P_{\text {III }}$ without using the Hamiltonian structure. A solution $\lambda(t)$ of P_{J} and the corresponding τ-function $\tau(t)$ depend on the constants $\nu=\left(\nu_{k}\right)$ ($k=1, \cdots, N(J)$) and $\eta=\left(\eta_{\Delta}\right)(\Delta=0, \infty, 1)$. For simplicity of notation, we represent this dependence by $\tau(\nu ; \eta), \lambda(\nu ; \eta)$. We can prove Theorem

2 by taking as $\tau_{i}(t)$ two τ-functions of P_{J} with different values of parameters and as $R_{i}\left(t ; \lambda, \lambda^{\prime}\right)$ polynomial Hamiltonians of the corresponding equation. In fact the expression (4) for $\lambda(t)=\lambda(\nu ; \eta)$ is given as follows :

P_{I}	$a(t)$	$b(t)$	$\tau_{1}(t)$	$\tau_{2}(t)$
II	1	0	$\tau\left(\nu_{1}\right)$	$\tau\left(\nu_{1}-1\right)$
III	$2 \eta_{\infty}$	$4 \eta_{0} \eta_{\infty} t^{2}$	$\tau\left(\nu_{1}, \nu_{2} ; \eta_{0}, \eta_{\infty}\right)$	$\tau\left(\nu_{2}, \nu_{1} ; \eta_{0},-\eta_{\infty}\right)$
III'	η_{∞}	$\frac{\nu_{2}-\nu_{1}}{t}$	$\tau\left(\nu_{1},-\nu_{2}-1 ; \eta\right)$	$\tau\left(\nu_{1}+1,-\nu_{2} ; \eta\right)$
IV	t	1	0	$\tau\left(\nu_{1}, \nu_{2}\right)$
V	$\frac{\nu_{2}-\nu_{3}}{t}$	0	$\tau\left(\nu_{1}, \nu_{2}, \nu_{3}+1 ; \eta_{1}\right)$	$\tau\left(\nu_{1}, \nu_{2}+1, \nu_{3} ; \eta_{1}\right)$
VI	$\frac{\nu_{3}-\nu_{4}}{t(t-1)}$	0	$\tau\left(\nu_{1}, \nu_{2}, \nu_{3}+1, \nu_{4}\right)$	$\tau\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}+1\right)$

Remark 3. We obtain the following expressions for $\mathrm{P}_{\mathrm{III}}, \mathrm{P}_{\mathrm{III}}, \mathrm{P}_{\mathrm{V}}$ and P_{VI} :

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{III}} & 2 \eta_{\infty} \lambda\left(\nu_{1}, \nu_{2} ; \eta\right)+\frac{2 \eta_{0}}{\lambda\left(\nu_{1}, \nu_{2} ; \eta\right)}=\frac{d}{d t} \log \frac{\tau\left(\nu_{1}+1, \nu_{2} ; \eta\right)}{\tau\left(\nu_{1}, \nu_{2} ; \eta\right)} ; \\
\mathrm{P}_{\mathrm{III}} & \frac{\eta_{0}}{\lambda\left(\nu_{1}, \nu_{2} ; \eta\right)}-\frac{\nu_{1}+\nu_{2}+1}{t}=\frac{d}{d t} \log \frac{\tau\left(\nu_{1}+1, \nu_{2}+1 ; \eta\right)}{\tau\left(\nu_{1}, \nu_{2} ; \eta\right)} ; \\
\mathrm{P}_{\mathrm{V}} & \frac{\eta_{1}}{1-\lambda\left(\nu_{1}, \nu_{2}, \nu_{3} ; \eta_{1}\right)}-\nu_{1}+\nu_{2}+\nu_{2}+1=\frac{d}{d t} \log \frac{\tau\left(\nu_{1}, \nu_{2}+1, \nu_{3}+1 ; \eta_{1}\right)}{\tau\left(\nu_{1}, \nu_{2}, \nu_{3} ; \eta_{1}\right)} ; \\
\mathrm{P}_{\mathrm{VI}} & \frac{\nu_{3}+\nu_{4}+1}{t-\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right)}+c(t)=\frac{d}{d t} \log \frac{\tau\left(\nu_{1}, \nu_{2}, \nu_{3}+1, \nu_{4}+1\right)}{\tau\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right)}, \\
& c(t)=\frac{\nu_{1}+\nu_{2}+\nu_{3}+\nu_{4}+1}{t}+\frac{\nu_{1}-\nu_{2}+\nu_{3}+\nu_{4}+1}{t-1} .
\end{array}
$$

Remark 4. In [4], another representation of a solution $\lambda(t)$ by the use of τ-functions is given for each of the equations P_{J}.

References

[1] K. Okamoto: Polynomial Hamiltonians associated with Painlevé equations. I. Proc. Japan Acad., 56A, 264-268 (1980).
[2] P. Painlevé: Sur les équations différentielles du second ordre à points critiques fixes. Oeuvres, t. III, p. 115 (1977).
[3] S. Salihoglu: The two-dimensional $O(N)$ non linear σ-model and the fifth Painlevé transcendent. Phys. Lett., 89B, 367-368 (1980).
[4] M. Jimbo and T. Miwa: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. RIMS, preprint, no. 327 (1980).
[5] P. Painlevé: Mémoire sur les équations différentielles dont l'intégrale générale est uniforme. Oeuvres, t. III, p. 123 (1977).
[6] V. I. Gromak: Theory of Painlevé's Equation. Diff. Urav., 11, 373-376 (1975).

[^0]: *) Partially supported by "The Sakkokai Foundation".

