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1. Introduction. Let (M, g) and (N, h) be compact Riemannian
manifolds and C’(N, M) be the space of all smooth maps from N to M
with the C topology. For f e C(N, M) we define its energy E(f) by

1 h’Off Off(1.1) E(f)=- _ Ox Ox
g.a.1.

A harmonic map is, by definition, a critical point of the functional E.
A harmonic map is said to be minimizing if it minimizes energy in its

connected component of C=(N, M), i.e. in its homotopy class.

When dim N= 1, N is a circle S and a harmonic map f" S--M is

a closed geodesic. It is well known that every component of C=(S, M)
contains a minimizing closed geodesic. In contrast with this, when
dim N=2, it is not always true that there exists a minimizing harmonic
map in each component of C=(N, M). For instance there exists no
minimizing harmonic map of degree +1 from a Riemann surface of
genus =>1 to a Riemann sphere whatever metrics are chosen on them
([5]).

On the other hand, Sacks and Uhlenbeck [8] established an ex-

istence result when N=S. Their result was applied to the proof of
Frankel’s conjecture by Siu and Yau [9] and to the study on the topo-
logy of 3-manifolds by Meeks and Yau [7]. The following is a result
of Sacks and Uhlenbeck refined by Siu and Yau. Let M be a compact
1-connected Riemannian manifold. Let foe C=(S, M). Then there
exist minimizing harmonic maps f, ., f e C=(S, M) such that, f,=fo in re(M) and that
i=l

(1.2) , E(f,)= inf{ E(g,)[p e N, g,= fo in m.(M)}.
i=1 i=l i=l

However it has been unknown whether one can always find a single

minimizing harmonic map homotopic to f0 or not.
The purpose of this paper is to give a Riemannian manifold M and

a component of C(S, M) such that no minimizing harmonic map ex-
ists in this component.

2. Statement of the result. Theorem. Let M be a compact
1-connected Khler surface. Suppose there are two disjoint rational
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curves C and D in M such that (C+D)oCOand(C+D)oD:O. Then
the homotopy class of C+D contains no minimizing harmonic map.

We can easily construct such curves C and D in Theorem as fol-
lows. Let M’ be a compact Kihler surface which contains a rational
curve D such that D D :/: 0. Choose any p e M’-D and let z M-M’
be the blow-up of M’ at p. If we set C==-(p) and D -(D), then
(C+D) C 1 and (C+D) o D :/: 0.

3. Properties of energy and area. Let (M, g) and (N, h) be
compact Riemannian manifolds. Throughout the rest of this paper
we assume that N is 2-dimensional.

For f e C(N, M) we define its area Area(f) by

(3.1) Area(f)=; fdet (g., f f’ )dxA dx
X X

where (x, x) is a local coordinate system on N. The following lemma
is clear from the relation between arithmetic mean and geometric mean.

Lemma 3.1.
(3.2) Area(f)gE(f).
The equality holds iff f is weakly conformal, i.e. there exists a non-
negative smooth function p on N such that f*g--ph.

Next we consider the case when M and N are compact Kihler
manifolds. For f e C(N, M) we define W(f) and E’(f) by

f" f/-ldwAd and

f,v

3f" 3f /- ldw /kd,E"(f)= g. 3 3w

where w is a holomorphic local coordinate on N.
Lemma 3.2 ([6]).

Then we have

(3.4) E(f)=E’(f)+E"(f) and | f*o--E’(f)-E"(f),
J

where o= /-lg.dz"Ad is the Kghler form of M.
4. Complex analyticity of certain harmonic maps.

Lemma 4.1. Let M be a 1-connected Riemannian manifold of
dimension >__3. Let and 4x be any smooth map from S to M.
Suppose there exists a minimizing harmonic map from S to M such
that f=-- in m.(M), then we have
(4.1) E(f) __<E()/E().

Proof. We consider S as R U {c}. Let go be a piecewise smooth
map from S to M parametrizing , a curve between () and (0),
and . Then g0- + in (M) and
(4.2) Area(go) Area(C) +Area().

Let be any small positive number. We can approximate go by a
smooth immersion g such that
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(4.3) Area(g) <=Area(go)+.
There exists a diffeomorphism of S pulling back the conformal struc-
ture defined by g*ds to the standard conformal structure. We define
g2 to be g composed with this diffeomorphism so that g2 is conformal.
Then we obtain from Lemm 3.1
(4.4) E(f)E(g2)--Area(g2)--Area(gl)

<=Area(C)+Area()+
E()+E()+.

Since is arbitrary, our conclusion follows.
Lemma 4.2. Let M be a l-connected Kihler manifold. Let and

4x be holomorphic maps from l-dimensional complex projective space
P with the Fubini-Study metric to M. Then every minimizing har-
monic map f from P to M such that f=++ in =(M) is holomorphic.

Proof. Let + be the Khler from of M. By Lemma 4.1 we have

(4.5) , f*=,*+,*(o=E()+E()>_E(f).
It follows from (4.5) and Lemm 3.2 that E"(f)=0 and so f is holo-
morphic.. Proof of Theorem. Suppose there were a minimizing har-
monic map f" P--M in the homotopy class of C+D. Then f is holo-
morphic by Lemma 4.2. Since f meets both C and D and CD=, f
meets C at finite points. Hence f intersects C positively. This con-
tradicts our assumption, completing the proof.
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