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66. A Note on the Large Sieve. IV
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(Communicated Kunihiko KODAIRA, M. J. A., June 12, 1980)

1. The purpose of the present note is to show a hybrid of the
multiplicative large sieve and the Rosser-Iwaniec linear sieve.

We retain most of the notations of our preceding paper [6], and in
addition we introduce the following conventions: Let y be a Dirichlet
character, and put

SA,z, 0= > ama,,
(P =1
where a, are arbitrary complex numbers. We put also, for y (mod g),

R= 3 1m—e @ 2D 11 (122 )x
nsoyzxenod d) d 2l b
in which ¢, is 1 if y is principal, and 0 otherwise.
Then our hybrid sieve is
Theorem 1. Let 4dbea finite set of primitive Dirichlet characters,
and let M, N be arbitrary but MN>z*. Then we have, as z2—>,

5 IS(4, 2 0F
<[xvelr (l°g MN Jrewj+o@| 3 lal

1 <
0g 2 (n}(z)) =1

where
E=max max ] | Z Bl V),

a,p VvEL y€4d m

{an}, {B.} Deing variable vectors such that lan <1, 18,11,
The proof which will be given in [7] is a direct application of Iwaniec’s
important idea [2] to the dual form

> 13 b,

n X
(n,P(2))=1
where b, are arbitrary complex numbers.
2. To illustrate the power of the above theorem we prove briefly
the following result of the Brun-Tichmarsh type:

Theorem 2. If x>k*Q*— oo, then we have

251 2 ol
(qq’%Q  (mod q) psl(modk)
<<2+o(1>)w(¢(k) tog (52 = ) wtas e,

where ) * denotes a sum over primitive characters.



No. 6] Large Sieve. IV 289

This is a large sieve extension of a result of Iwaniec [2, Theorem 3],
and at the same time an improvement upon a result of [4] the first
paper of this series (see also [5]).

For the proof we set in Theorem 1 A={n;n=I[(mod k), n<ax},
P={p; pYk}, z=(MN)"?, 4={y primitive (mod q); ¢< @, (¢, k)=1}, and
a,=11if » is a prime and a,=0 otherwise. Then 6(d)=1 for d|P(z),
and X==x/k. So our problem is now the estimation of E. For this
sake we put

A, 0= 2 anpx(m)m=, B(s, x)=n4:;v Bax(m)n~*.

m<M
Using Perron’s inversion formula we get, for y (mod ¢) and T'>1,

20 R (1)

m<M
n<N

-1 50 [ Lis, 1) As, 18)B(s, 18)-%ds
" 2rip(k) e(n?;m .[1/2—” XA X KAy

ol((H29) " Yo evany).

Hence setting T=(xMNEkQ)° with a sufficiently large ¢ we have

E« xl/; (log xMNQFk) max max max U-!

0] 27:] Vved 1<ULT

(], &, g mora(], 5, g oried

g (mod k) x€4 &(mod k) y€4

{[, 2, SIBeworias)

§(mod k) x€4
where the integrations are all along the straight line [1/2—:U, 1/2+1U].
By a simple application of the multiplicative large sieve we see that
the second and the third integrals are, respectively,
O{(M*+kQ*U) log* M} and O{(N+kQ*U) log N}.
On the other hand the method of Ramachandra (cf. [1, pp. 80-81])
yields

[ = s worasict@uy .

¢(mod k) x4

Thus
E« ~—(]}c—)(wQﬁ YAM - EQHD AN + Q) *(xMNQE)*.
14
This implies that an optimal choice of M, N is given by N=M*>kQ?,
M=/ kQ)" . And after some additional considerations about
the primes >2 we conclude the proof of Theorem 2.

It should be remarked that Iwaniec [3] has given various methods
to deal with F when 4 consists of only the trivial character, and most
of his arguments may be carried into the more general situation of the
present note. Thus in particular Theorem 2 is by no means the best
result deducible from Theorem 1 ; the detailed discussions will be given
in [7].
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