60. A Uniqueness Theorem in an Identification Problem for Coefficients of Parabolic Equations

By Takashi Suzuki*) and Reiji Murayama**)
(Communicated by Kôsaku Yosida, m. J. A., June 12, 1980)

1. Introduction and results. In this paper we consider the parabolic equation

$$
\frac{\partial u}{\partial t}+\left(p(x)-\frac{\partial^{2}}{\partial x^{2}}\right) u=0 \quad(\text { in }(0, \infty) \times \Omega)
$$

under the Neumann boundary condition

$$
\frac{\partial}{\partial n} u=0 \quad(\text { on }(0, \infty) \times \partial \Omega),
$$

with the initial condition

$$
\left.u\right|_{t=0}=a(x) \quad(x \in \Omega),
$$

where $\Omega=(0,1) \subset R^{1}$. In what follows, however, the coefficient $p(x)$ and the initial value $a(x)$ are to be determined, while values of the solution on the boundary $u(t, \xi),(\xi \in \partial \Omega)$, are regarded as observed and known functions of $t \in\left[T_{1}, T_{2}\right]$ for some T_{1}, T_{2} with $0<T_{1}<T_{2}<\infty$. Namely, we are concerned with the following

Problem. Can we determine $\{p, a\}$ through $\left\{u(t, \xi) ; T_{1}<t<T_{2}\right.$, $\xi=0,1\}$?
It is obvious that the answer is negative without any assumption on $\{p, a\}$. Actually, if $a=0$, then $u \equiv 0$ for any p. Hence we introduce the following

Definition. The realization in $L^{2}(\Omega)$ of the differential operator $p(x)-\partial^{2} / \partial x^{2}$ with the Neumann boundary condition is denoted by A_{p}. The eigenvalues and eigenfunctions of A_{p} are denoted by $\left\{\lambda_{n} ; n=1,2, \cdots\right\}$ and $\left\{\phi\left(\cdot, \lambda_{n}\right) ; n=1,2, \cdots\right\}$, respectively. Then, an initial value $\alpha \in L^{2}(\Omega)$ is said to be a generating element with respect to A_{p} iff $\left(a, \phi\left(\cdot, \lambda_{n}\right)\right) \neq 0$ for any n, where (,) is the L^{2}-inner product.

Then we have the following
Theorem. Consider the following equations (I) and (II) for p, q $\in C^{1}[0,1]$. Let $a, b \in L^{2}(0,1)$ and assume that a is a generating element with respect to A_{p} :

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\left(p(x)-\frac{\partial^{2}}{\partial x^{2}}\right) u=0 \quad(0<t<\infty, x \in(0,1)) \tag{I}\\
\left.\frac{\partial u}{\partial x}\right|_{x=0,1}=0 \quad(0<t<\infty) \\
\left.u\right|_{t=0}=a(x) \quad(x \in(0,1)),
\end{array}\right.
$$

*) Department of Mathematics, Faculty of Science, University of Tokyo.
**) Ministry of Health and Welfare.

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}+\left(q(x)-\frac{\partial^{2}}{\partial x^{2}}\right) v=0 \quad(0<t<\infty, x \in(0,1)) \tag{II}\\
\left.\frac{\partial v}{\partial x}\right|_{x=0,1}=0 \quad(0<t<\infty) \\
\left.v\right|_{t=0}=b(x) \quad(x \in(0,1))
\end{array}\right.
$$

Then, the equality $u(t, \xi)=v(t, \xi)\left(T_{1}<t<T_{2}, \xi=0,1\right)$ implies $p(x)=q(x)$ $(x \in[0,1])$ and $a(x)=b(x)$ (a.e. $x \in(0,1))$.

Remark 1. Pierce [7] considered a similar parabolic equation with null initial condition, with non-homogeneous boundary condition of the third kind on $\xi=0$ and with homogeneous boundary condition of the same kind on $\xi=1$. He showed that in such a case, the values $u(t, \xi)\left(0<t<T_{1}, \xi=0\right)$ determines the spectral density function of A_{p}, whence $p(x)=q(x)$ follows by the theory of Gel'fand-Levitan [2]. In proving our Theorem, we are also inspired by Gel'fand-Levitan's idea of using a certain integral operator to transform eigenfunctions. However, our method is rather direct and does not use their theory itself.

Remark 2. Recently, one of the authors has succeeded in constructing $\{p, a\}$ theoretically in terms of $\left\{u(t, \xi) ; T_{1}<t<T_{2}, \xi=0,1\right\}$. His method is more heavily based on Gel'fand-Levitan's theory. According to his result it is necessary for $a(x)$ to be a generating element with respect to A_{p}, in order that $\{p, a\}$ should be uniquely determined by $\left\{u(t, \xi) ; T_{1}<t<T_{2}, \xi=0,1\right\}$. Detailed discussions of these results are given in Murayama [5] along with some extensions to other problems such as determination of the coefficients of $A_{\alpha}=-(\partial / \partial x)(\alpha(x))(\partial / \partial x)$, or of the boundary conditions.

Remark 3. As for other works concerning inverse problems for parabolic equations we refer to Sabatier [9], Prilenko [8], Isakov [3], Iskenderov [4] and Chavent [1].
2. Outline of the proof of Theorem. The realization in $L^{2}(\Omega)$ of the operator $q(x)-\partial^{2} / \partial x^{2}$ with the Neumann boundary condition is denoted by A_{q}, and its eigenvalues and eigenfunctions are denoted by $\left\{\mu_{m}\right\}$ and $\left\{\psi\left(\cdot, \mu_{m}\right)\right\}$, respectively. We normalize $\left\{\phi\left(\cdot, \lambda_{n}\right)\right\}$ and $\left\{\psi\left(\cdot, \mu_{m}\right)\right\}$ as $\phi\left(0, \lambda_{n}\right)=\psi\left(0, \mu_{m}\right)=1(n, m=1,2, \cdots)$. Then solutions u, v are given by the following eigenfunction-expansion:

$$
\begin{align*}
u(t, x) & =\sum_{n=1}^{\infty} e^{-\lambda_{n} t}\left(a, \phi\left(\cdot, \lambda_{n}\right)\right) / \rho_{n} \cdot \phi\left(x, \lambda_{n}\right) \tag{1}\\
v(t, x) & =\sum_{m=1}^{\infty} e^{-\mu_{m} t}\left(b, \psi\left(\cdot, \mu_{m}\right)\right) / \sigma \cdot \psi\left(x, \mu_{m}\right) \tag{2}
\end{align*}
$$

where $\rho_{n}=\int_{0}^{1} \phi\left(x, \lambda_{n}\right)^{2} d x$ and $\sigma_{m}=\int_{0}^{1} \psi\left(x, \mu_{m}\right)^{2} d x$. By the hypothesis we have $u(t, \xi)=v(t, \xi)\left(T_{1}<t<T_{2}, \xi=0,1\right)$, which holds for any t in $0<t$ $<\infty$ by analytic continuation in t :

$$
\begin{align*}
& \sum_{n=1}^{\infty} e^{-\lambda_{n} t}\left(a, \phi\left(\cdot, \lambda_{n}\right)\right) / \rho_{n} \cdot \phi\left(\xi, \lambda_{n}\right) \tag{3}\\
& \quad=\sum_{m=1}^{\infty} e^{-\mu_{m} t}\left(b, \psi\left(\cdot, \mu_{m}\right)\right) / \sigma_{m} \cdot \psi\left(\xi, \mu_{m}\right) \quad(0<t<\infty, \xi=0,1)
\end{align*}
$$

Since $\left(a, \phi\left(\cdot, \lambda_{n}\right)\right) \neq 0$ and λ_{n} is simple ($n=1,2, \cdots$), we have, by putting $\xi=0$,
(4)

$$
\lambda_{n}=\mu_{m(n)}
$$

and
(5)

$$
\left(a, \phi\left(\cdot, \lambda_{n}\right)\right) / \rho_{n}=\left(b, \psi\left(\cdot, \mu_{m(n)}\right)\right) / \sigma_{m(n)} \neq 0
$$

for some $m(n)$. On the other hand, it is well known that

$$
\begin{gathered}
\lambda_{n}^{1 / 2}=n \pi+0\left(\frac{1}{n}\right) \quad(n \rightarrow \infty) \\
\mu_{m}^{1 / 2}=m \pi+0\left(\frac{1}{m}\right) \quad(m \rightarrow \infty)
\end{gathered}
$$

This means that $m(n)=n$ in (4) and (5). Moreover, by putting $\xi=1$ in (3), we have

$$
\begin{equation*}
\phi\left(1, \lambda_{n}\right)=\psi\left(1, \mu_{n}\right) \quad(n=1,2, \cdots) . \tag{6}
\end{equation*}
$$

We need the following
Lemma 1. There exists a C^{2}-class function $K=K(x, y)$ in $0 \leqq y \leqq x$ $\leqq 1$ subject to

$$
\left\{\begin{array}{l}
K_{x x}(x, y)-K_{y y}(x, y)+p(y) K(x, y)=q(x) K(x, y) \tag{E}\\
K_{y}(x, 0)=0 \\
K(x, x)=\frac{1}{2} \int_{0}^{x}\{q(s)-p(s)\} d s
\end{array}\right.
$$

Lemma 2. With $K(x, y)$ in the preceding lemma, the eigenfunctions are related to each other as

$$
\begin{equation*}
\psi\left(x, \mu_{n}\right)=\phi\left(x, \lambda_{n}\right)+\int_{0}^{x} K(x, y) \phi\left(y, \lambda_{n}\right) d y \quad(n=1,2, \cdots) . \tag{7}
\end{equation*}
$$

Proof of Lemma 2. We denote the right hand side of (7) by $\psi(x)$. By use of $\left(p(x)-\left(d^{2} / d x^{2}\right)\right) \phi\left(x, \lambda_{n}\right)=0, \phi^{\prime}\left(0, \lambda_{n}\right)=0, \phi\left(0, \lambda_{n}\right)=1$ and (E), we obtain
(9)

$$
\begin{equation*}
\lambda \psi(x)+\frac{d^{2}}{d x^{2}} \psi(x)=q(x) \psi(x) \quad\left(\lambda=\lambda_{n}\right), \tag{8}
\end{equation*}
$$

and
(10)

$$
\psi(0)=1
$$

$$
\psi^{\prime}(0)=0 .
$$

Indeed, (9) is immediate, and (10) is obvious from

$$
\psi^{\prime}(x)=\phi^{\prime}\left(x, \lambda_{n}\right)+K(x, x) \phi\left(x, \lambda_{n}\right)+\int_{0}^{x} K_{x}(x, y) \phi\left(y, \lambda_{n}\right) d y
$$

Finally, (8) is verified as

$$
\begin{aligned}
& \left(\lambda_{n}+\frac{d^{2}}{d x^{2}}\right) \psi(x)=\left(\frac{d^{2}}{d x^{2}}+\lambda_{n}\right) \phi\left(x, \lambda_{n}\right)+\left(\frac{d}{d x} K(x, x)+K_{x}(x, x)\right) \phi\left(x, \lambda_{n}\right) \\
& +K(x, x) \phi^{\prime}\left(x, \lambda_{n}\right)+\int_{0}^{x} K(x, y) \lambda_{n} \phi\left(y, \lambda_{n}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
= & p(x) \phi\left(x, \lambda_{n}\right)+\left(\frac{d}{d x} K(x, x)+K_{x}(x, x)\right) \phi\left(x, \lambda_{n}\right) \\
& +K(x, x) \phi^{\prime}\left(x, \lambda_{n}\right)+\int_{0}^{x} K(x, y)\left[p(y)-\frac{d^{2}}{d y^{2}}\right] \phi\left(y, \lambda_{n}\right) d y \\
= & p(x) \phi\left(x, \lambda_{n}\right)+\left(\frac{d}{d x} K(x, x)+K_{x}(x, x)+K_{y}(x, x)\right) \phi\left(x, \lambda_{n}\right) \\
& -K_{y}(x, 0)+\int_{0}^{x}\left[K_{x x}(x, y)+K(x, y) p(y)-K_{y y}(x, y)\right] \phi\left(y, \lambda_{n}\right) d y \\
= & q(x) \psi(x) \quad(\because(\mathrm{E})) .
\end{aligned}
$$

Uniqueness of the solution of the Cauchy problem of (8), (9) and (10) implies (7).
Q.E.D.

Now, by (6), $\psi^{\prime}\left(1, \lambda_{n}\right)=0$ and (7), we have

$$
\begin{equation*}
\int_{0}^{1} K(1, y) \phi\left(y, \lambda_{n}\right) d y=0 \quad(n=1,2, \cdots) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
K(1,1) \phi\left(1, \lambda_{n}\right)+\int_{0}^{1} K_{x}(1, y) \phi\left(y, \lambda_{n}\right) d y=0 \quad(n=1,2, \cdots) . \tag{12}
\end{equation*}
$$

Therefore, the completeness of $\left\{\phi\left(\cdot, \lambda_{n}\right) ; n=1,2, \cdots\right\}$ implies $K(1, y)$ $=K_{x}(1, y)=0(y \in[0,1])$. By considering the domain of dependence of the hyperbolic equation in (E), we have $K(x, y)=0(0 \leqq 1-x \leqq y \leqq x \leqq 1)$, so that we have $p(x)=q(x)(1 / 2 \leqq x \leqq 1)$ by the last equality of (E). Now, by transforming x to $\tilde{x}=1-x$ and repeating the same argument as above, we have $p(x)=q(x)(0 \leqq x \leqq 1 / 2)$, whence follows $p \equiv q$. Therefore, (5) implies $\left(a, \phi\left(\cdot, \lambda_{n}\right)\right)=\left(b, \phi\left(\cdot, \lambda_{n}\right)\right)(n=1,2, \cdots)$, hence we obtain $a(x)=b(x)$ (a.e. $x \in(0,1)$).
Q.E.D.

Proof of Lemma 1. This lemma can be proved in some standard way as we sketch below. We extend the coefficients p and q to $p \in C^{1}[-1,1]$ and $q \in C^{1}[0,2]$ and construct the solution $K=K(x, y)$ of (E) in $\{(x, y) ;|x-1|+|y|<1\}$. By transforming the variables (x, y) to (X, Y) as $X=(1 / 2)(x+y)$ and $Y=(1 / 2)(x-y)$, we seek the solution $k=k(X, Y)$ of the following system of equations $\left(\mathrm{E}^{\prime}\right)$ on $[0,1] \times[0,1]$:
(E^{\prime})

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial X \partial Y} k(X, Y)=r(X, Y) k(X, Y) \\
\left(\frac{\partial k}{\partial X}-\frac{\partial k}{\partial Y}\right)(X, X)=0 \\
k(X, 0)=f(X)
\end{array}\right.
$$

where $k(X, Y)=K(X+Y, X-Y), r(X, Y)=1 / 2\{q(X+Y)-p(X-Y)\}$ and $f(X)=1 / 2 \int_{0}^{x}\{q(s)-p(s)\} d s$. Let $R\left(X, Y ; X_{0}, Y_{0}\right)$ be the Riemann's function of the hyperbolic equation $\left(\partial^{2} / \partial X \partial Y\right) k=r(X, Y) k$ (see, e.g., Picard [6]). Putting $Q(X, Y)=(\partial R / \partial X-\partial R / \partial Y)(Y, Y ; X, 0)$, we can show that $Q(X, Y)$ is in $C^{2}([0,1] \times[0,1])$ and that the equation

$$
\begin{equation*}
g(X)+\int_{0}^{X} Q(X, Y) g(Y) d Y=2 f(X)-f(0) \tag{G}
\end{equation*}
$$

has a solution $g \in C^{2}([0,1] \times[0,1])$. Furthermore, we can show that the system of equations
($\mathrm{E}^{\prime \prime}$)

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial X \partial Y} k=r(X, Y) k \\
k(X, X)=g(X) \\
k(X, 0)=f(X)
\end{array}\right.
$$

has a solution $k=k(X, Y)$ in $C^{2}([0,1] \times[0,1])$ and that $k=k(X, Y)$ is a solution of (E^{\prime}) simultaneously. In fact, the second equation of (E^{\prime}) is obtained by differentiating

$$
\int_{0}^{X} R(Y, Y ; X, 0)\left(\frac{\partial k}{\partial Y}-\frac{\partial k}{\partial X}\right)(Y, Y) d Y=0
$$

which follows from the Riemann's formula

$$
\begin{aligned}
k(X, 0)= & \frac{1}{2}\{k(X, X)+k(0,0)\} \\
& +\frac{1}{2} \int_{0}^{X}\left\{R(Y, Y ; X, 0)\left(\frac{\partial k}{\partial Y}-\frac{\partial k}{\partial X}\right)(Y, Y)\right. \\
& \left.+\left(\frac{\partial R}{\partial X}-\frac{\partial R}{\partial Y}\right)(Y, Y ; X, 0) k(Y, Y)\right\} d Y .
\end{aligned}
$$

Q.E.D.

Acknowledgement. The authors wish to express their sincere thanks to Prof. H. Fujita for his suggesting the present problem to them and for his hearty encouragement.

References

[1] Chavent, G.: Analyse fonctionelle et identification de coefficient répartis dans les équations aux dérivées partielles. Thesis, Paris (1971).
[2] Gel'fand, I. M., and Levitan, B. M.: On the determination of a differential equation from its spectral function. Izv. Acad. Nauk. SSSR, Ser. Mat., 15 (4) (1951) (in Russian) : Amer. Math. Soc. Trans., Ser. 2, 1, 253-304 (1955) (English transl.).
[3] Isakov, V. M.: Uniqueness theorems for inverse problems of heat potentials. Siberian Math. J., 17 (2), 202-212 (1977).
[4] Iskenderov, A. D.: Multidimensional inverse problems for linear and quasilinear parabolic equations. Dokl. Acad. Nauk. SSSR, 225 (5), 1564-1568 (1975).
[5] Murayama, R.: On certain inverse problems in parabolic equations. Master's Thesis, University of Tokyo (1980).
[6] Picard, E.: Leçons sur quelques types simples d'équations aux dérivées partielles. Paris-Imprimerie Gauthier-Villars (1950).
[7] Pierce, A.: Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J., Control and Optimization, 17 (4), 494-499 (1979).
[8] Prilenko, A. I.: Inverse problems of potential theory (elliptic, parabolic, hyperbolic, and transport equations). Math. Notes, 14, 990-996 (1973).
[9] Sabatier, P. C.: Introduction to applied inverse problems. Lect. Note in Physics, vol. 85, Springer, pp. 1-26 (1978).

