59. A Note on Quasilinear Evolution Equations

By Kiyoko Furuya

Department of Mathematics, Tokyo Metropolitan University (Communicated by Kôsaku Yosida, M. J. A., June 12, 1980)

§ 1. Introduction. In this note we give a generalization of the result of Massey [2] who proved analyticity in t of solutions to quasi-linear evolution equations

(1.1)
$$\frac{du}{dt} + A(t, u)u = f(t, u), \qquad 0 \leq t \leq T,$$

$$(1.2) u(0) = u_0.$$

The unknown, u, is a function of t with values in a Banach space X. For fixed t and $v \in X$, the linear operator -A(t,v) is the generator of an analytic semigroup in X and $f(t,v) \in X$. We consider the equation (1.1) under the assumption that the domain $D(A(t,u)^h)$ of $A(t,u)^h$ is independent of t, u for some h>0, while Massey discussed it in the case that D(A(t,u)) is constant.

In the following L(X,Y) is the space of linear operators from normed space X to normed space Y, and B(X,Y) is the space of bounded linear operators from normed space X to normed space Y. L(X) = L(X,X) and B(X) = B(X,X). $\|$ $\|$ will be used for the norm in both X and B(X).

The author wishes to express her hearty thanks to Prof. Y. Kōmura for his kind advices and encouragements.

- § 2. The main result. We shall make the following assumptions: A-1°) $u_0 \in D(A_0)$ and $A_0^{-\alpha}$ is a well-defined operator $\in B(X)$ where $A_0 \equiv A(0, u_0)$.
- A-2°) There exist h=1/m, where m is an integer, $m \ge 2$, R>0, $T_0>0$, $\phi_0>0$ and $0 \le \alpha < h$, such that $A(t,A_0^{-\alpha}w)$ is a well-defined operator eL(X) for each $t \in \Sigma_0 \equiv \{t \in C; |\arg t| < \phi_0, \ 0 \le |t| < T_0\}$ and $w \in N$ $\equiv \{w \in X; ||w A_0^{\alpha}u_0|| < R\}.$
 - A-3°) For any $t \in \Sigma_0$ and $w \in N$
- (2.1) $\begin{cases} \text{the resolvent of } A(t, A_0^{-\alpha}w) \text{ contains the left half-plane and} \\ \text{there exists } C_1 \text{ such that } \|(\lambda A(t, A_0^{-\alpha}w))^{-1}\| \leq C_1(1+|\lambda|)^{-1}. \end{cases}$
- A-4°) The domain $D(A(t, A_0^{-\alpha}w)^h) = D$ of $A(t, A_0^{-\alpha}w)^h$ is independent of $t \in \Sigma_0$ and $w \in N$.
- A-5°) The map $\Phi: (t,w) \mapsto A(t,A_0^{-\alpha}w)^h A_0^{-h}$ is analytic from $(\Sigma_0 \setminus \{0\}) \times N$ to B(X).
 - A-6°) There exist C_2 , C_3 , σ , $1-h < \sigma \le 1$ such that
- $(2.2) ||A(t, A_0^{-\alpha}w)^h A(s, A_0^{-\alpha}v)^{-h}|| \leq C_2 t, s \in \Sigma_0, w, v \in N,$

(2.3)
$$||A(t, A_0^{-\alpha}w)^h A(s, A_0^{-\alpha}v)^{-h} - I|| \leq C_3 \{|t-s|^\sigma + ||w-v||\}$$

$$t, s \in \Sigma_0, w, v \in N.$$

A-7°) $f(t, A_0^{-\alpha}w)$ is defined and belongs to X for each $t \in \Sigma_0$ and $w \in N$, and there exists C_4 such that

$$(2.4) \qquad || f(t, A_0^{-\alpha} w) - f(s, A_0^{-\alpha} v) || \leq C_4 \{|t - s|^{\sigma} + || w - v ||\} \\ t, s \in \Sigma_0, \ w, v \in N.$$

A-8°) The map $\Psi: (t, w) \mapsto f(t, A_0^{-\alpha}w)$ is analytic from $(\Sigma_0 \setminus \{0\}) \times N$ into X.

These constants C_i (i=1,2,3,4) do not depend on t,s,w,v.

Theorem. Let the assumptions A-1°)-A-8°) hold. Then there exist $T, 0 < T \le T_0$, ϕ , $0 < \phi \le \phi_0$, K > 0, k, 1-h < k < 1 and a unique continuous function u mapping $\Sigma = \{t \in C; |\arg t| < \phi, 0 \le |t| < T\}$ into X such that $u(0) = u_0$, $u(t) \in D(A(t, u(t)))$ and $||A_0^\alpha u(t) - A_0^\alpha u_0|| < R$ for $t \in \Sigma \setminus \{0\}$, $u: \Sigma \setminus \{0\} \to X$ is analytic, du/dt + A(t, u(t))u(t) = f(t, u(t)) for $t \in \Sigma \setminus \{0\}$, and $||A_0^\alpha u(t) - A_0^\alpha u_0|| \le K |t|^k$ for $t \in \Sigma$.

The sketch of the proof is given in §3. The complete proof of our result will be published elsewhere.

§ 3. Sketch of proof. We first restrict t to be real. We introduce sets Q(s,L,k). Here k is any number satisfying $1-h < k < \min \{1-\alpha,\sigma\}$ and L is any positive number. A function v(t), defined for $0 \le t \le s$, is said to belong to Q(s,L,k) if $v(0) = A_0^\alpha u_0$ and if $\|v(t_1) - v(t_2)\| \le L |t_1 - t_2|^k$ for any t_1, t_2 in [0,s]. Then for sufficiently small positive s and for all $t \in [0,s]$, we get $\|v(t)\| < R$ for any function $v(t) \in Q(s,L,k)$. Hence the operator $A_v(t) = A(t,A_0^{-\alpha}v(t))$ is well defined for $t \in [0,s]$. Set $f_v(t) = f(t,A_0^{-\alpha}v(t))$ and $w_v(t) = A_0^\alpha w(t)$, where w is the unique solution of

$$egin{cases} \{dw/dt\!+\!A_v(t)w\!=\!f_v(t), & t\in[0,s] \ w(0)\!=\!u_o. \end{cases}$$

Then using the linear theory of Kato [1], we get $w_v \in Q(s, L, k)$ for sufficiently small s.

We set F = Q(s, L, k) and define a transformation $w_v = Tv$ for $v \in F$. Then T maps F into itself. By some calculations we can prove the following key fact: If s is small enough, there exists $0 < \theta < 1$ such that for any $v_1, v_2 \in F$ the inequality $|||Tv_1 - Tv_2||| \le \theta |||v_1 - v_2|||$ holds (where $|||v||| = \sup_{0 \le t \le s} ||v(t)||$). So by the fixed point theorem there exists a unique point v in F such that Tv = v. Then $u = A_0^{-a}v$ is a unique solution of (1.1), (1.2) which is continuously differentiable for $0 < t \le s$, continuous for $0 \le t \le s$.

Next we shall show that u is extensible analytically in t to a sector Σ . From (2.1) there are constants C_4 , $\phi_1 > 0$, $T_1 > 0$ such that for $t \in \Sigma_1$, $w \in N$ and $|\theta| < \phi_1$ the resolvent of $e^{i\theta}A(t, A_0^{-\alpha}w)$ contains the left plane and

$$\|(\lambda - e^{i\theta}A(t, A_0^{-\alpha}w))^{-1}\| \leq C_4(1+|\lambda|)^{-1}$$
 Re $\lambda \leq 0$,

where $\Sigma_1 \equiv \{t \in C; |\arg t| < \phi_1, \ 0 \leq |t| < T_1\}$. We let $\phi = \min \{\phi_0, \phi_1\}$, and in (1.1) and (1.2) we make the change of variable $t = \tau e^{i\theta}$, $\tau \in [0, T_1]$, $|\theta| < \phi$, so equations (1.1) and (1.2) become

(3.1)
$$\begin{cases} \partial v/\partial \tau + e^{i\theta} A(\tau e^{i\theta}, v)v = e^{i\theta} f(\tau e^{i\theta}, v), \\ v(0, e^{i\theta}) = u_0, \end{cases}$$

where $v(\tau, e^{i\theta}) = u(\tau e^{i\theta})$ and u(t) = v(|t|, t/|t|).

We hold $|\theta| < \phi$ fixed and apply the argument about real t to equation (3.1). Then there exist T, $0 < T \le \min\{T_0, T_1\}$ and a unique solution $v(\tau, e^{i\theta})$ of (3.1) defined for $\tau \in [0, T]$, $|\theta| < \phi$. Let $\Sigma \equiv \{t \in C; |\arg t| < \phi, 0 \le |t| < T\}$ and

$$\begin{cases} u(t) = v(|t|, t/|t|), & t \in \Sigma \setminus \{0\}, \\ u(0) = u_0. \end{cases}$$

We can easily prove that u satisfies the conclusions of Theorem.

References

- [1] T. Kato: Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J., 5, 93-125 (1961).
- [2] F. J. Massey, III: Analyticity of solutions of nonlinear evolution equations. J. Diff. Eqs., 22, 416-427 (1976).