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59. A Note on Quasilinear Evolution Equations
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(Communicated by K.Ssaku YOSIDA, M. J. A., June 12, 1980)

1. Introduction. In this note we give a generalization of the
result of Massey [2] who proved analyticity in t of solutions to quasi-
linear evolution equations

(1.1) dU +A(t, u)u-- f(t, u), O<_t<_T,
dt

(1.2) u(O)----Uo.
The unknown, u, is a function of t with values in a Banach space X.
For fixed t and v e X, the linear operator -A(t, v) is the generator of
an analytic semigroup in X and f(t, v) e X. We consider the equation
(1.1) under the assumption that the domain D(A(t, u)) of A(t, u) is
independent of t, u for some h0, while Massey discussed it in the case
that D(A(t, u)) is constant.

In the following L(X, Y) is the space of linear operators rom
normed space X to normed space Y, and B(X, ) is the space of
bounded linear operators from normed space X to normed space Y.
L(X)=L(X, X) and B(X)-B(X, X). will be used for the norm in
both X and B(X).

The author wishes to express her hearty thanks to Prof. Y.
KSmura for his kind advices and encouragements.

2. The main result. We shall make the ollowing assumptions"
A-l) Uo e D(Ao) and A" is a well-defined operator e B(X) where

Ao---- A(O, Uo).
A-2) There exist h-l/m, where m is an integer, m2, R0,

T00, 00and 0<:a h, such that A(t, A;"w) is a well-defined operator
eL(X) or each te27o={teC;largtlo,0=<ltlTo} and weN
=_{w e

A-3) For any t e 27o and w e N

the resolvent of A(t, A;"w) contains the left half-plane and(2.1)
(there exists C such that l(,--A(t,A;"w))

A-4) The domain D(A(t, A"w))=D of A(t, A;"w) is independ-
ent of t e 2o and w e N.

A-5) The map ’(t,w)A(t,A;"w)A is analytic from

(Xo\{0}) N to B(X).
A-6) There exist C., C, a, 1-ha=<l such that

(2.2) ]]A(t, A"w)A(s, A"v)-]]C. t, s e Xo, w, v e N,
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(2.3) A(t, A"w)A(s,
t, s e 20, w, v e N.

A-7) f(t, A"w) is defined and belongs to X for each t e X0 and
w e N, and there exists C, such that
(2.4) [If(t, Aw) f(s, Av)

t, s e 20, w, v e N.
A-8) The map " (t, w)f(t, A"w) is analytic from (20\{0}) N

into X.
These constants C (i-1, 2, 3, 4) do not depend on t, s, w, v.

Theorem. Let the assumptions A-I)-A-8) hold. Then there
exist T, O(T<=To, , 0(0, KO, k, 1-h(k(l and a unique con-
tinuous function u mapping 27-- {t e C; [arg t l(, 0ltl( T} into X such
that u(O)-uo, u(t) e D(A(t, u(t))) and Agu(t)--Aguoll<R for t e 2\(0},
u" X\(O}-X is analytic, du/dt+A(t, u(t))u(t)- f(t, u(t)) for e
and Agu(t) Aguo gK t for t e 2.

The sketch of the proof is given in 3. The complete proof of
our result will be published elsewhere.

3. Sketch of proof. We first restrict t to be real. We introduce
sets Q(s, L, k). Here k is any number satisfying 1 h(k(min (1 -a,
and L is any positive number. A unction v(t), defined for 0_< t_<s, is
said to belong to Q(s,L, k) if v(O)-Auo and if I]v(tl)--v(tf)llL [t--t.l
for any t, t in [0, s]. Then for sufficiently small positive s and for all
t e [0, s], we get Iv(t)II (R for any function v(t) e Q(s, L, k). Hence the
operator A(t)-A(t,A["v(t)) is well defined for t e [0, s]. Set
-f(t, A;"v(t)) and wo(t)-Agw(t), where w is the unique solution of

dw / dt -- A(t)w =f(t), t e [0, s]
w(0) =u0.

Then using the linear theory of Kato [1], we get w e Q(s,L, k)for
sufficiently small s.

We set F Q(s, L, k) and define a transformation w= Tv for v e F.
Then T maps F into itself. By some calculations we can prove the
following key fact" If s is small enough, there exists 081 such
that for any v,v.eF the inequality II]Tv--Tv.ll]<__t]llv--v holds
(where ]1 v I=sup0_ v(t)ll). So by the fixed point theorem there
exists a unique point v in F such that Tv=v. Then u=A;v is a uni-
que solution of (1.1), (1.2) which is continuously differentiable for 0t
<__ s, continuous for 0_< t_< s.

Next we shall show that u is extensible analytically in t to a sector
X. From (2.1) there are constants C, 0, T0 such that for t e
w e N and [tl the resolvent of eA(t, Aw) contains the left plane
and

II(-eA(t,A;w))- l_<_C(+ll)- Re
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where .r--(t e C; larg t[<, 0=<lt[<T}. We let -min {0, }, and in
(1.1) and (1.2) we make the change of variable t=rei, r e [0, T1], Itl,
so equations (1.1) and (1.2) become

/r+ eiOA(re, v)v ef(re, v),(3.1)
v(O, e)-=Uo,

where v(r, e)-u(re) and u(t)-v(Itl, t/ltl).
We hold ]t[ fixed and apply the argument about real t to equa-

tion (3.1). Then there exist T, 0T=<min (To, T} and a unique solution
v(r, e0 of (3.1) defined for re [0, T], 101. Let 2--(teC; largtl,
O<=ltl<T} and

(3.2)
(u(0) -u0.

We caa easily prove that u satisfies the conclusions of Theorem.
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