57. On the Strong Convergence of the Cèsaro Means of Contractions in Banach Spaces

By Kazuo Kobayasi*) and Isao Miyadera**)
(Communicated by Kôsaku Yosida, M. J. A., June 12, 1980)

1. Introduction. Throughout this paper X denotes a uniformly convex Banach space and C is a nonempty closed convex subset of X. A mapping $T: C \rightarrow C$ is called a contraction on C, or $T \in \operatorname{Cont}(C)$ if $\|T x-T y\| \leqq\|x-y\|$ for every $x, y \in C$. A family $\{T(t) ; t \geqq 0\}$ of mappings from C into itself is called a contraction semi-group on C if $T(0)$ $=I$ (the identity on C), $T(t+s)=T(t) T(s), T(t) \in \operatorname{Cont}(C)$ for $t, s \geqq 0$ and $\lim _{t \rightarrow 0+} T(t) x=x$ for every $x \in C$. The set of fixed points of a mapping T will be denoted by $F(T)$.

The purpose of this paper is to prove the following (nonlinear) mean ergodic theorems.

Theorem 1. Let $T \in \operatorname{Cont}(C), x \in C$ and $F(T) \neq \emptyset$. If $\lim _{n \rightarrow \infty} \| T^{n} x$ $-T^{n+i} x \|$ exists uniformly in $i=1,2, \cdots$, then there exists an element $y \in F(T)$ such that
(the strong limit) $\lim _{n \rightarrow \infty} n^{-1} \sum_{i=0}^{n-1} T^{i+k} x=y$ uniformly in $k=0,1,2, \cdots$.
Theorem 2. Let $\{T(t) ; t \geqq 0\}$ be a contraction semi-group on C, $x \in C$ and $\bigcap_{t>0} F(T(t)) \neq \emptyset$. If $\lim _{t \rightarrow \infty}\|T(t) x-T(t+h) x\|$ exists uniformly in $h>0$, then there exists an element $y \in \bigcap_{t>0} F(T(t))$ such that

$$
\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{t} T(s+h) x d s=y \quad \text { uniformly in } h \geqq 0
$$

These results have been known in Hilbert space (cf. [1, 2]).
2. Proofs of Theorems. For a given $T \in \operatorname{Cont}(C)$ we set S_{n} $=n^{-1}\left(I+T+\cdots+T^{n-1}\right)$ for every $n \geqq 1$. We start with the following

Lemma 1. Let $T \in \operatorname{Cont}(C), x \in C$ and $F(T) \neq \emptyset$. Suppose that (*) $\quad \lim _{n \rightarrow \infty}\left\|T^{n} x-T^{n+i} x\right\|$ exists uniformly in $i=1,2, \cdots$. Then we have
(1) $\quad \lim _{n, m \rightarrow \infty}\left\|2^{-1}\left(S_{n} T^{l+n} x+S_{m} T^{l+m} x\right)-T^{l}\left(2^{-1} S_{n} T^{n} x+2^{-1} S_{m} T^{m} x\right)\right\|=0$ uniformly in $l=1,2, \cdots$. In particular,
(2) $\quad \lim _{n \rightarrow \infty}\left\|S_{n} T^{l+n} x-T^{l} S_{n} T^{n} x\right\|=0 \quad$ uniformly in $l=1,2, \cdots$.

Proof. Take an $f \in F(T)$ and an $r>0$ with $r \geqq\|x-f\|$, and set $D=\{z \in X ;\|z-f\| \leqq r\} \cap C$ and $U=\left.T\right|_{D}$ (the restriction of T to D). Since D is bounded closed convex and $U \in \operatorname{Cont}(D)$, by virtue of [4, Theorem

[^0]2.1] (cf. [3, Lemma 1.1]) there exists a strictly increasing, continuous convex function $\gamma:[0, \infty) \rightarrow[0, \infty)$ with $\gamma(0)=0$ such that
\[

$$
\begin{aligned}
& \left\|U^{l}\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right)-\sum_{i=1}^{k} \lambda_{i} U^{l} x_{i}\right\| \\
& \quad \leqq \gamma^{-1}\left(\max _{1 \leq i, j \leq k}\left[\left\|x_{i}-x_{j}\right\|-\left\|U^{l} x_{i}-U^{l} x_{j}\right\|\right]\right)
\end{aligned}
$$
\]

for any $\lambda_{1}, \cdots, \lambda_{k} \geqq 0$ with $\lambda_{1}+\cdots+\lambda_{k}=1$, any $x_{1}, \cdots, x_{k} \in D$ and any $k, l \geqq 1$. Consequently

$$
\begin{aligned}
& \left\|T^{l}\left(\sum_{i=0}^{n-1} \lambda_{i} x_{i}+\sum_{i=1}^{m-1} \mu_{i} y_{i}\right)-\left(\sum_{i=0}^{n-1} \lambda_{i} T^{l} x_{i}+\sum_{i=0}^{m-1} \mu_{i} T^{l} y_{i}\right)\right\| \\
& \quad \leqq \gamma^{-1}\left(\operatorname { m a x } \left\{\left\|x_{i}-x_{j}\right\|-\left\|T^{l} x_{i}-T^{l} x_{j}\right\|,\left\|x_{i}-y_{p}\right\|-\left\|T^{l} x_{i}-T^{l} y_{p}\right\|,\right.\right. \\
& \left.\left.\quad\left\|y_{p}-y_{q}\right\|-\left\|T^{l} y_{p}-T^{l} y_{q}\right\| ; 0 \leqq i, j \leqq n-1,0 \leqq p, q \leqq m-1\right\}\right)
\end{aligned}
$$

for any $\lambda_{i}, \mu_{i} \geqq 0$ with $\sum_{i=0}^{n-1} \lambda_{i}+\sum_{i=0}^{m-1} \mu_{i}=1$, any $x_{i}, y_{i} \in D$ and any n, m $\geqq 1, l \geqq 0$. Using this inequality with $\lambda_{i}=1 / 2 n, x_{i}=T^{i+n} x$ for $0 \leqq i \leqq n$ -1 and $\mu_{i}=1 / 2 m, y_{i}=T^{i+m} x$ for $0 \leqq i \leqq m-1$, we obtain
(3) $\left\|T^{l}\left(2^{-1} S_{n} T^{n} x+2^{-1} S_{m} T^{m} x\right)-\left(2^{-1} S_{n} T^{l+n} x+2^{-1} S_{m} T^{l+m} x\right)\right\|$

$$
\begin{aligned}
& \leqq \gamma^{-1}\left(\operatorname { m a x } \left\{\left\|T^{i+n} x-T^{j+n} x\right\|-\left\|T^{l+i+n} x-T^{l+j+n} x\right\|,\left\|T^{i+n} x-T^{p+m} x\right\|\right.\right. \\
& \quad-\left\|T^{l+i+n} x-T^{l+p+m} x\right\|,\left\|T^{p+m} x-T^{q+m} x\right\| \\
& \left.\left.\quad-\left\|T^{l+p+m} x-T^{l+q+m} x\right\| ; 0 \leqq i, j \leqq n-1,0 \leqq p, q \leqq m-1\right\}\right)
\end{aligned}
$$

for any $n, m \geqq 1$ and $l \geqq 0$.
For any $\varepsilon>0$ choose a $\delta>0$ such that $\gamma^{-1}(\delta)<\varepsilon$. By $(*)$ there exists a positive integer N such that $\beta(i) \leqq\left\|T^{n} x-T^{n+i} x\right\|<\beta(i)+\delta$ for every $i \geqq 0$ and $n \geqq N$, where $\beta(i)=\lim _{n \rightarrow \infty}\left\|T^{n} x-T^{n+i} x\right\|$. Hence if $n, m \geqq N$ then $\left\|T^{i+n} x-T^{j+m} x\right\|-\left\|T^{l+i+n} x-T^{l+j+m} x\right\|$

$$
<\beta(|j+m-i-n|)+\delta-\beta(|j+m-i-n|)=\delta \quad \text { for every } i, j \geqq 0 .
$$

Combining this with (3), we obtain that if $n, m \geqq N$ then

$$
\left\|T^{l}\left(2^{-1} S_{n} T^{n} x+2^{-1} S_{m} T^{m} x\right)-\left(2^{-1} S_{n} T^{l+n} x+2^{-1} S_{m} T^{l+m} x\right)\right\| \leqq \gamma^{-1}(\delta)<\varepsilon
$$

for any $l \geqq 0$. Thus (1) holds true. Taking $m=n$ in (1), we have (2).
Q.E.D.

We note that for every sequence $\left\{x_{n}\right\}$ in X the following equality holds good: For any $l, p \geqq 1$ and $k \geqq 0$

$$
\begin{equation*}
l^{-1} \sum_{i=0}^{l-1} x_{i+k}=l^{-1} \sum_{i=0}^{l-1}\left(p^{-1} \sum_{j=0}^{p-1} x_{i+j+k}\right)+(l p)^{-1} \sum_{i=1}^{p-1}(p-i)\left(x_{i+k-1}-x_{i+k+l-1}\right) . \tag{4}
\end{equation*}
$$

Lemma 2. Let $T \in \operatorname{Cont}(C), x \in C$ and $F(T) \neq \emptyset$. If $\left(^{*}\right)$ is satisfied, then $\left\{\left\|S_{n} T^{n} x-f\right\|\right\}$ is convergent for every $f \in F(T)$.

Proof. Let $f \in F(T)$ and $\alpha_{n}=\sup _{j \geqq 0}\left\|S_{n} T^{n+j} x-T^{j} S_{n} T^{n} x\right\|$ for $n \geqq 1$. Since $S_{n+m} T^{n+m} x=(n+m)^{-1} \sum_{i=0}^{n+m-1}\left(S_{n} T^{n+m+i} x-T^{m+i} S_{n} T^{n} x\right)$

$$
\begin{aligned}
& +(n+m)^{-1} \sum_{i=0}^{n+m-1} T^{m+i} S_{n} T^{n} x \\
& +[n(n+m)]^{-1} \sum_{i=1}^{n-1}(n-i)\left[T^{n+m+i-1} x-T^{2(n+m)+i-1} x\right]
\end{aligned}
$$

by (4),

$$
\begin{aligned}
& \left\|S_{n+m} T^{n+m} x-f\right\| \leqq \alpha_{n}+(n+m)^{-1} \sum_{i=0}^{n+m-1}\left\|T^{m+i} S_{n} T^{n} x-f\right\| \\
& \quad+[n(n+m)]^{-1} \sum_{i=1}^{n-1}(n-i)\left\|T^{n+m+i-1} x-T^{2(n+m)+i-1} x\right\| \\
& \leqq \alpha_{n}+\left\|S_{n} T^{n} x-f\right\|+(n-1)\|x-f\| /(n+m)
\end{aligned}
$$

for $n, m \geqq 1$. Letting $m \rightarrow \infty$, we have
$\limsup _{m \rightarrow \infty}\left\|S_{m} T^{m} x-f\right\| \leqq \alpha_{n}+\left\|S_{n} T^{n} x-f\right\| \quad$ for $n \geqq 1$.
Therefore $\limsup _{m \rightarrow \infty}\left\|S_{m} T^{m} x-f\right\| \leqq \liminf _{n \rightarrow \infty}\left\|S_{n} T^{n} x-f\right\|$ because $\lim _{n \rightarrow \infty} \alpha_{n}=0$ by (2).
Q.E.D.

Lemma 3. Let $T \in \operatorname{Cont}(C), x \in C$ and $F(T) \neq \emptyset$. If (*) is satisfied, then there exists an element $y \in F(T)$ such that $\lim _{n \rightarrow \infty} S_{n} T^{n+k} x=y$ uniformly in $k \geqq 0$.

Proof. Take an $f \in F(T)$ and set $u_{n}=S_{n} T^{n} x-f$ for $n \geqq 1$. By Lemma 2, $d=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|$ exists. Since $\left\|u_{n+1}-u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, we have (5) $\lim _{n \rightarrow \infty}\left\|u_{n}+u_{n+i}\right\|=2 d \quad$ for every $i \geqq 0$.
We now show that $\left\{S_{n} T^{n} x\right\}$ is strongly convergent to an element of $F(T)$. Since $S_{n+k} T^{n+k} x=(n+k)^{-1} \sum_{i=0}^{n+k-1} S_{n} T^{n+k+i} x+v(n, k)$ by (4) and $\|v(n, k)\| \leqq(n-1)\|x-f\| /(n+k)$, where

$$
v(n, k)=[n(n+k)]^{-1} \sum_{i=1}^{n-1}(n-i)\left[T^{n+k+i-1} x-T^{2(n+k)+i-1} x\right],
$$

we have

$$
\begin{aligned}
\left\|u_{n+k}+u_{m+k}\right\|= & \|(n+k)^{-1} \sum_{i=0}^{n+k-1}\left(S_{n} T^{n+k+i} x+S_{m} T^{m+k+i} x-2 f\right) \\
& +[(n-m) /(m+k)(n+k)] \sum_{i=0}^{n+k-1}\left(S_{m} T^{m+k+i} x-f\right) \\
& +(m+k)^{-1} \sum_{i=n+k}^{m+k-1}\left(S_{m} T^{m+k+i} x-f\right)+v(n, k)+v(m, k) \| \\
\leqq & (2 /(n+k)) \sum_{i=0}^{n+k-1}\left\|2^{-1}\left(S_{n} T^{n+k+i} x+S_{m} T^{m+k+i} x\right)-f\right\| \\
& +2(m-n)\|x-f\| /(m+k) \\
& +[(n-1) /(n+k)+(m-1) /(m+k)]\|x-f\|
\end{aligned}
$$

for $m \geqq n \geqq 1$ and $k \geqq 0$. Combining this with $\| 2^{-1}\left(S_{n} T^{n+k+i} x+S_{m} T^{m+k+i} x\right)$ $-f\left\|\leqq \alpha_{n, m}+\right\| 2^{-1}\left(S_{n} T^{n} x+S_{m} T^{m} x\right)-f \|$, where $\alpha_{n, m}=\sup _{l \geqq 0} \| 2^{-1}\left(S_{n} T^{n+l} x\right.$ $\left.+S_{m} T^{m+l} x\right)-T^{l}\left(2^{-1} S_{n} T^{n} x+2^{-1} S_{m} T^{m} x\right) \|$, we obtain

$$
\begin{aligned}
&\left\|u_{n+k}+u_{m+k}\right\| \leqq 2 \alpha_{n, m}+\left\|u_{n}+u_{m}\right\|+[(n-1) /(n+k) \\
&+(m-1) /(m+k)]\|x-f\|+2(m-n)\|x-f\| /(m+k) \\
& \quad \text { for } m \geqq n \geqq 1 \text { and } k \geqq 0 .
\end{aligned}
$$

Letting $k \rightarrow \infty$, it follows from (5) that

$$
2 d \leqq 2 \alpha_{n, m}+\left\|u_{n}+u_{m}\right\| \leqq 2 \alpha_{n, m}+\left\|u_{n}\right\|+\left\|u_{m}\right\|
$$

for every $n, m \geqq 1$. Since $\lim _{n, m \rightarrow \infty} \alpha_{n, m}=0$ by Lemma 1 , we have that $\lim _{n, m \rightarrow \infty}\left\|u_{n}+u_{m}\right\|=2 d$. By uniform convexity of X and $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=d$, $\lim _{n, m \rightarrow \infty}\left\|S_{n} T^{n} x-S_{m} T^{m} x\right\|=\lim _{n, m \rightarrow \infty}\left\|u_{n}-u_{m}\right\|=0$, whence $\left\{S_{n} T^{n} x\right\}$ converges strongly. Put $y=\lim _{n \rightarrow \infty} S_{n} T^{n} x$. By (2), $\left\|S_{n} T^{n} x-T S_{n} T^{n} x\right\|$
$\leqq 2\|x-f\| / n+\left\|S_{n} T^{n+1} x-T S_{n} T^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$ and hence $y \in F(T)$.
Finally, by (2) again,

$$
\begin{aligned}
& \sup _{k \geq 0}\left\|S_{n} T^{n+k} x-y\right\| \leqq \sup _{k \geq 0}\left[\left\|S_{n} T^{n+k} x-T^{k} S_{n} T^{n} x\right\|\right. \\
& \left.\quad+\left\|T^{k} S_{n} T^{n} x-y\right\|\right] \leqq \sup _{k \geqq 0}\left\|S_{n} T^{n+k} x-T^{k} S_{n} T^{n} x\right\|+\left\|S_{n} T^{n} x-y\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
Q.E.D.

Proof of Theorem 1. By virtue of Lemma 3, there exists an element $y \in F(T)$ such that $\lim _{n \rightarrow \infty} S_{n} T^{n+k} x=y$ uniformly in $k \geqq 0$. Therefore, for any $\varepsilon>0$ there exists a positive integer N such that $\left\|S_{N} T^{N+j} x-y\right\|<\varepsilon$ for all $j \geqq 0$. Since

$$
S_{n} T^{k} x=n^{-1} \sum_{i=0}^{n-1} S_{N} T^{k+i} x+(n N)^{-1} \sum_{i=1}^{N-1}(N-i)\left(T^{k+i-1} x-T^{k+i+n-1} x\right)
$$

by (4), if $n>N$ then

$$
\begin{aligned}
&\left\|S_{n} T^{k} x-y\right\| \leqq n^{-1} \sum_{i=1}^{n-1}\left\|S_{N} T^{k+i} x-y\right\|+(N-1)\|x-y\| / n \\
& \leqq n^{-1} \sum_{i=0}^{N-1}\left\|S_{N} T^{k+i} x-y\right\|+n^{-1} \sum_{i=N}^{n-1}\left\|S_{N} T^{k+i} x-y\right\| \\
& \quad+(N-1)\|x-y\| / n \\
& \leqq N\|x-y\| / n+\varepsilon+(N-1)\|x-y\| / n \quad \text { for all } k \geqq 0
\end{aligned}
$$

Hence $\sup _{k \geq 0}\left\|S_{n} T^{k} x-y\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Q.E.D.

Remarks. 1) Let $T \in \operatorname{Cont}(C)$ and $x \in C$. If $\left\{T^{n} x\right\}$ has a convergent subsequence, then condition $\left(^{*}\right.$) is satisfied (cf. [2, Theorem 2.4]).
2) Let X be a Hilbert space, and let $T \in \operatorname{Cont}(C)$. If T is odd, then condition (*) is satisfied for every $x \in C$ (cf. [1, 2]).

Proof of Theorem 2. Similarly as in the proof of the preceding lemmas, we have the following (a)-(c):
(a) $\lim _{s, t \rightarrow \infty} \| 2^{-1}\left(S_{t} T(t+h) x+S_{s} T(s+h) x\right)-T(h)\left(2^{-1} S_{t} T(t) x\right.$

$$
\left.+2^{-1} S_{s} T(s) x\right) \|=0
$$

uniformly in $h>0$;
(b) $\lim _{t \rightarrow \infty}\left\|S_{t} T(t) x-f\right\|$ exists for every $f \in F \equiv \bigcap_{t>0} F(T(t))$;
(c) there exists an element $y \in F$ such that $\lim _{t \rightarrow \infty} S_{t} T(t+h) x=y$ uniformly in $h \geqq 0$; where $S_{t} z=t^{-1} \int_{0}^{t} T(s) z d s$ for $z \in C$ and $t>0$. To prove (b) and (c) we use the following equality instead of (4);

$$
\begin{aligned}
t^{-1} \int_{0}^{t} T(\xi+h) x d \xi= & t^{-1} \int_{0}^{t}\left[s^{-1} \int_{0}^{s} T(\xi+\eta+h) x d \eta\right] d \xi \\
& +(t s)^{-1} \int_{0}^{s}(s-\eta)[T(\eta+h) x-T(\eta+t+h) x] d \eta
\end{aligned}
$$

for $t, s>0$ and $h \geqq 0$. Now, the same argument in the proof of Theorem 1 implies that $\lim _{t \rightarrow \infty} S_{t} T(h) x=y$ uniformly in $h \geqq 0$.
Q.E.D.

References

[1] H. Brezis: Asymptotic behavior of some evolution systems. Nonlinear Evolution Equations (ed. by M. Crandall), Academic Press (1978).
[2] R. E. Bruck: On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set. Israel J. Math., 29, 1-16 (1978).
[3] -: A simple proof of the mean erogodic theorem for nonlinear contractions in Banach spaces. Ibid., 32, 107-116 (1979).
[4] --: On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces (to appear).

[^0]: *) Department of Mathematics, Sagami Institute of Technology, Fujisawa.
 **) Department of Mathematics, Waseda University, Tokyo.

