51. On the Determination of all NB-Structures on BCK-Algebras

By Kiyoshi Iséki

Department of Mathematics, Kobe University

(Communicated by Kôsaku Yosida, m. J. A., May 12, 1980)

In this Note, we shall show that all NB-structures on a BCK-algebra are completely determined by a simple way, and the NB-structures give some surprising simplifications of complicated conditions which define various classes of BCK-algebras. Thus the NB-structures on a BCK-algebra may be considered as an auxiliary apparatus.

The NB-structure on a BCK-algebra was independently introduced by the present author and H. Rasiowa (see [1], [3]). To define it, we first recall a definition of BCK-algebras and its basic properties (for detail, see [2]).

A *BCK-algebra* $\langle X; *, 0 \rangle$ is an algebra of type $\langle 2, 0 \rangle$ satisfying the following conditions (1)-(5).

- (1) ((x*y)*(x*z))*(z*y)=0,
- (2) (x * (x * y)) * y = 0,
- $(3) \quad x * x = 0,$
- $(4) \quad 0 * x = 0,$

(5) x * y = y * x = 0 implies x = y.

If we define $x \le y$ by x * y = 0, then X is a partially ordered set with respect to \le .

For elements x, y, z in a *BCK*-algebra;

 $(6) \quad x * 0 = x,$

(7) (x * y) * z = (x * z) * y.

If a *BCK*-algebra X has a greatest element with respect to \leq , then X is called to be *bounded*. The greatest element is denoted by 1.

If we define Nx by 1 * x, then the following relations hold:

(8) N0=1, N1=0,

(9) Nx * y = Ny * x for any x, y.

Generalizing this notion, we arrive at the notion of an NB-algebra.

If a unary operation \sim on a *BCK*-algebra X satisfies

 $(10) \quad \sim x * y = \sim y * x$

for any $x, y \in X$, then X is called an *NB-algebra*.

Let X be an NB-algebra. (10) implies

$$\sim x * 0 = \sim 0 * x$$

By (6), it follows that

 $(11) \quad \sim x = \sim 0 * x.$

This shows that $\sim x$ is completely determined by ~ 0 and x. In particular, if $\sim 0 \le x$, then $\sim x=0$.

Next, let X be a *BCK*-algebra. For any fixed element $a \in X$, we define $\sim 0 = a$ and $\sim x = a * x$. Then by (7), we obtain

 $\sim x * y = (a * x) * y = (a * y) * x = \sim y * x.$

Hence X is an NB-algebra.

From the above consideration, we conclude

Theorem 1. Any BCK-algebra always has NB-structures. The NB-structures on a BCK-algebra X are completely determined by defining $\sim 0=a$, and $\sim x=a*x$ for any fixed element a and any element $x \in X$.

Theorem 1 and (11) imply

Corollary. If $\sim 0=1$ holds in a bounded BCK-algebra X, then the operations N and \sim coincide.

As an application of Theorem 1, we shall give a simple condition that a BCK-algebra is to be positive implicative.

If a BCK-algebra X satisfies

(12) (x * y) * y = x * y

for any $x, y \in X$, then it is called to be *positive implicative*.

Let X be a positive implicative BCK-algebra with an NB-structure. Then

$$(\sim x * y) * y = \sim x * y.$$

By (1), (7), we have

 $(\sim x * y) * y = (\sim y * x) * y = (\sim y * y) * x, \qquad \sim x * y = \sim y * x.$ Hence

(13) (~

(13) $(\sim y * y) * x = \sim y * x$. Let x=0 in (13). Then, by (6)

$$\sim y * y = \sim y.$$

Conversely, let us suppose that (13) holds in a *BCK*-algebra X with an *NB*-structure. Then it is easily seen that X satisfies $(\sim x * y) * y = \sim x * y$. Hence from Theorem 1, we have the following

Theorem 2. A BCK-algebra X is positive implicative, if and only if for any NB-structure

$$\sim x * x = \sim x$$

holds.

We shall consider an example.

Example. Let $X = \{0, a, b, c\}$. Let us give the operation * on X by Table I. Then X is a *BCK*-algebra (see Fig. 1). The *NB*-structures on X are given by $\sim 0=0, a, b, c$. For example, let $\sim 0=c$. Then $\sim a = c * a = c$, $\sim b = c * b = c$, c = c * c = 0. By a similar method, we have Table II.

Consider the type II.

Table I				<u> </u>	Table II				
*	0 a	b	с	~	0	a	b	c	
0	0 0	0	0	I II	c	c	c	0	
a	a 0	0	a	II	b	a	0	b	
	b a			III	a	с	0	a	
c	c c	c	0	IV	0	0	0	0	

 $\sim a * a = a * a = 0 \Rightarrow \sim a.$

Hence X is not positive implicative.

Remark. In my Note [1], other three algebras which are B, BN and NBN-algebras are introduced. But we do not find good ways to determine all B, BN, NBN-structures on a BCK-algebras.

By an *NBN-algebra*, we mean a *BCK*-algebra X with an unary operation \sim satisfying

 $(14) \quad \sim x \ast \sim y \leq y \ast x.$

This algebra has a close connection with an NB-algebra.

Let X be an NB-algebra. By Theorem 1, for some $a \in X$, $\sim x$ is defined by a * x. Hence, from (1), we have

 $\sim x \ast \sim y = (a \ast x) \ast (a \ast y) \le y \ast x.$

Hence X is an NBN-algebra. Thus we have the following fundamental Theorem 3. Any NB-algebra is an NBN-algebra.

But the converse is not true. To show this, consider the *BCK*algebra X in Example. We define $\sim x = a$ for any $x \in X$. Then the operation \sim gives an *NBN*-structure, which is trivial. This is not interesting, but we can define a non-trivial *NBN*-structures on X. For example, a non-trivial *NBN*-structure is defined by

$$\sim 0 = \sim c = a, \qquad \sim a = \sim b = 0$$

as easily verified. This is not an NB-structure on X.

S. Tanaka introduced the notion of a commutative BCK-algebra (for example, see [2]). By a *commutative* BCK-algebra X, we mean a BCK-algebra satisfying

$$x * (x * y) = y * (y * x)$$

for any $x, y \in X$. If we define $x \wedge y = x * (x * y)$, then X is a \wedge -semilattice.

Let X be a commutative, NB-algebra. If $\sim \sim x = x$ for some $x \in X$. By Theorem 1 and the commutativity of X, $\sim x = \sim 0 * x$ implies

 $x = \sim \sim x = \sim 0 * (\sim 0 * x) = \sim 0 \land x.$

Hence $x \le \sim 0$.

Conversely, let $x \le \sim 0$. Then we have

$$x = \sim 0 \land x = \sim \sim x.$$

Hence we have the following

Theorem 4. In a commutative, NB-algebra, the set of involutions, i.e. $\sim \sim x = x$ is given by the set consisting of all elements x such that $x \leq \sim 0$.

References

- K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
- [2] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japon., 23, 1-26 (1978).
- [3] H. Rasiowa: An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics. vol. 78, Amsterdam (1974).

222