51. On the Determination of all NB.Structures on BCK-Algebras

By Kiyoshi Iséki
Department of Mathematics, Kobe University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1980)

In this Note, we shall show that all $N B$-structures on a $B C K$-algebra are completely determined by a simple way, and the $N B$-structures give some surprising simplifications of complicated conditions which define various classes of $B C K$-algebras. Thus the $N B$-structures on a $B C K$-algebra may be considered as an auxiliary apparatus.

The $N B$-structure on a $B C K$-algebra was independently introduced by the present author and H. Rasiowa (see [1], [3]). To define it, we first recall a definition of $B C K$-algebras and its basic properties (for detail, see [2]).

A BCK-algebra $\langle X ; *, 0\rangle$ is an algebra of type $\langle 2,0\rangle$ satisfying the following conditions (1)-(5).
(1) $((x * y) *(x * z)) *(z * y)=0$,
(2) $(x *(x * y)) * y=0$,
(3) $x * x=0$,
(4) $0 * x=0$,
(5) $x * y=y * x=0$ implies $x=y$.

If we define $x \leq y$ by $x * y=0$, then X is a partially ordered set with respect to \leq.

For elements x, y, z in a $B C K$-algebra;
(6) $x * 0=x$,
(7) $(x * y) * z=(x * z) * y$.

If a $B C K$-algebra X has a greatest element with respect to \leq, then X is called to be bounded. The greatest element is denoted by 1.

If we define $N x$ by $1 * x$, then the following relations hold:
(8) $N 0=1, N 1=0$,
(9) $N x * y=N y * x$ for any x, y.

Generalizing this notion, we arrive at the notion of an $N B$-algebra.
If a unary operation \sim on a $B C K$-algebra X satisfies
(10) $\sim x * y=\sim y * x$
for any $x, y \in X$, then X is called an $N B$-algebra.
Let X be an $N B$-algebra. (10) implies

$$
\sim x * 0=\sim 0 * x .
$$

By (6), it follows that
(11) $\sim x=\sim 0 * x$.

This shows that $\sim x$ is completely determined by ~ 0 and x. In particular, if $\sim 0 \leq x$, then $\sim x=0$.

Next, let X be a $B C K$-algebra. For any fixed element $a \in X$, we define $\sim 0=a$ and $\sim x=a * x$. Then by (7), we obtain

$$
\sim x * y=(a * x) * y=(a * y) * x=\sim y * x .
$$

Hence X is an $N B$-algebra.
From the above consideration, we conclude
Theorem 1. Any BCK-algebra always has NB-structures. The $N B$-structures on a BCK-algebra X are completely determined by defining $\sim 0=a$, and $\sim x=a * x$ for any fixed element a and any element $x \in X$.

Theorem 1 and (11) imply
Corollary. If $\sim 0=1$ holds in a bounded BCK-algebra X, then the operations N and \sim coincide.

As an application of Theorem 1, we shall give a simple condition that a $B C K$-algebra is to be positive implicative.

If a $B C K$-algebra X satisfies
(12) $(x * y) * y=x * y$
for any $x, y \in X$, then it is called to be positive implicative.
Let X be a positive implicative $B C K$-algebra with an $N B$-structure. Then

$$
(\sim x * y) * y=\sim x * y
$$

By (1), (7), we have

$$
(\sim x * y) * y=(\sim y * x) * y=(\sim y * y) * x, \quad \sim x * y=\sim y * x
$$

Hence
(13) $(\sim y * y) * x=\sim y * x$.

Let $x=0$ in (13). Then, by (6)

$$
\sim y * y=\sim y
$$

Conversely, let us suppose that (13) holds in a $B C K$-algebra X with an $N B$-structure. Then it is easily seen that X satisfies $(\sim x * y) * y$ $=\sim x * y$. Hence from Theorem 1, we have the following

Theorem 2. A BCK-algebra X is positive implicative, if and only if for any NB-structure

$$
\sim x * x=\sim x
$$

holds.
We shall consider an example.
Example. Let $X=\{0, a, b, c\}$. Let us give the operation $*$ on X by Table I. Then X is a $B C K$-algebra (see Fig. 1). The $N B$-structures on X are given by $\sim 0=0, a, b, c$. For example, let $\sim 0=c$. Then $\sim a=c * a=c, \sim b=c * b=c, c=c * c=0$. By a similar method, we have Table II.

Consider the type II.

Fig. 1

$$
\begin{aligned}
& \text { Table I } \\
& \begin{array}{c|cccc}
* & 0 & a & b & c \\
\hline 0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & a \\
b & b & a & 0 & b \\
c & c & c & c & 0
\end{array} \\
& \text { Table II } \\
& \sim a * a=a * a=0 \neq \sim a .
\end{aligned}
$$

Hence X is not positive implicative.
Remark. In my Note [1], other three algebras which are $B, B N$ and $N B N$-algebras are introduced. But we do not find good ways to determine all $B, B N, N B N$-structures on a $B C K$-algebras.

By an $N B N$-algebra, we mean a $B C K$-algebra X with an unary operation ~ satisfying
(14) $\sim x * \sim y \leq y * x$.

This algebra has a close connection with an $N B$-algebra.
Let X be an $N B$-algebra. By Theorem 1, for some $a \in X, \sim x$ is defined by $a * x$. Hence, from (1), we have

$$
\sim x * \sim y=(a * x) *(a * y) \leq y * x .
$$

Hence X is an $N B N$-algebra. Thus we have the following fundamental
Theorem 3. Any NB-algebra is an NBN-algebra.
But the converse is not true. To show this, consider the BCKalgebra X in Example. We define $\sim x=a$ for any $x \in X$. Then the operation \sim gives an $N B N$-structure, which is trivial. This is not interesting, but we can define a non-trivial $N B N$-structures on X. For example, a non-trivial $N B N$-structure is defined by

$$
\sim 0=\sim c=a, \quad \sim a=\sim b=0
$$

as easily verified. This is not an $N B$-structure on X.
S. Tanaka introduced the notion of a commutative $B C K$-algebra (for example, see [2]). By a commutative BCK-algebra X, we mean a $B C K$-algebra satisfying

$$
x *(x * y)=y *(y * x)
$$

for any $x, y \in X$. If we define $x \wedge y=x *(x * y)$, then X is a \wedge-semilattice.

Let X be a commutative, $N B$-algebra. If $\sim \sim x=x$ for some $x \in X$. By Theorem 1 and the commutativity of $X, \sim x=\sim 0 * x$ implies

$$
x=\sim \sim x=\sim 0 *(\sim 0 * x)=\sim 0 \wedge x .
$$

Hence $x \leq \sim 0$.
Conversely, let $x \leq \sim 0$. Then we have

$$
x=\sim 0 \wedge x=\sim \sim x .
$$

Hence we have the following
Theorem 4. In a commutative, NB-algebra, the set of involutions, i.e. $\sim \sim x=x$ is given by the set consisting of all elements x such that $x \leq \sim 0$.

References

[1] K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] K. Iséki and S. Tanaka: An introduction to the theory of $B C K$-algebras. Math. Japon., 23, 1-26 (1978).
[3] H. Rasiowa: An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics. vol. 78, Amsterdam (1974).

