
No. 5] Proc. Japan Acad., 56, Ser. A (1980) 219
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(Communicated by K6saku YOSIDA, M. J. A., May 12, 1980)

In this Note, we shall show that all NB-structures on a BCK-al-
gebra are completely determined by a simple way, and the NB-struc-
tures give some surprising simplifications of complicated conditions
which define various classes of BCK-algebras. Thus the NB-structures
on a BCK-algebra may be considered as an auxiliary apparatus.

The NB-structure on a BCK-algebra was independently introduced
by the present author and H. Rasiowa (see [1], [3]). To define it, we
first recall a definition of BCK-algebras and its basic properties (for
detail, see [2]).

A BCK-algebra (X;,, 0) is an algebra of type (2, 0) satisfying
the following conditions (1)-(5).

(1) ((x,y),(x,z)),(z,y)--O,
(2) (x,(x,y)),y=O,
(3) x,x=O,
(4) O,x=O,
( 5 ) x y y x 0 implies x y.
If we define x<_y by x,y--0, then X is a partially ordered set

with respect to <_.
For elements x, y, z in a BCK-algebra;
(6) x,O=x,
(7) (x,y),z=(x,z),y.
If a BCK-algebra X has a greatest element with respect to <_, then

X is called to be bounded. The greatest element is denoted by 1.
If we define Nx by 1, x, then the following relations hold"
(8) N0-I, NI=0,
(9) Nx,y=Ny,x for any x, y.
Generalizing this notion, we arrive at the notion of an NB-algebra.
If a unary operation on a BCK-algebra X satisfies
(10) x,y= y,x

for any x, y e X, then X is called an NB-algebra.
Let X be an NB-algebra. (10) implies

x,0-- 0,x.

By (6), it follows that
(11) x=0,x.
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This shows that x is completely determined by 0 and x. In parti-
cular, if 0<_x, then -x=0.

Next, let X be a BCK-algebra. For any fixed element a e X, we
define 0 a and x a, x. Then by (7), we obtain

x.y=(a.x).y=(a.y).x= y.x.
Hence X is an NB-algebra.

From the above consideration, we conclude
Theorem 1. Any BCK-algebra always has NB-structures. The

NB-structures on a BCK-algebra X are completely determined by de-
fining 0 a, and x a. x for any fixed element a and any element
xeX.

Theorem 1 and (11) imply
Corollary. If 0=1 holds in a bounded BCK-algebra X, then

the operations N and coincide.
As an pplication of Theorem 1, we shall give a simple condition

that a BCK-algebra is to be positive implicative.
I a BCK-algebra X satisfies
(12) (x y) y- x y

for any x, y e X, then it is called to be positive implicative.
Let X be a positive implicative BCK-algebra with an NB-structure.

Then
(.-x,y),y= x,y.

By (1), (7), we have
(x,y),y=(y,x),y=(.--y,y),x, x,y= y,x.

Hence
(13) ( y y) x y x.

Let x-O in (13). Then, by (6)
y,y= y.

Conversely, let us suppose that (13) holds in BCK-algebra X
with an NB-structure. Then it is easily seen that X satisfies (x, y), y

x, y. Hence 2rom Theorem 1, we have the ollowing
Theorem 2. A BCK-algebra X is positive implicative, if and only

f for any NB-structure
x,x--

holds.
We shall consider an example.
lxample. Let X={0, a, b, c}. Let us give the operation on X

by Table I. Then X is a BCK-algebra (see Fig. 1). The NB-struc-
tures on X are given by .-O=O,a,b,c. For example, let 0=c.
Then a c a c, b c b c, c c c 0. By a similar method, we
have Table II.

Consider the type II.
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Table I Table II

Oabc Oabc

0000 I cccO
aOOa II
b a 0 b III c 0 a
cccO IV 000

-a,a=a,a=O# -a.

Hence X is not positive implicative.
Remark, In my Note [1], other three algebras which are B, BN

and NBN-algebras are introduced. But we do not find good ways to
determine all B, BN, NBN-structures on a BCK-algebras.

By an NBN-algebra, we mean a BCK-algebra X with an unary
operation satisfying

(14) Nx, -yGy,x.
This algebra has a close connection with an NB-algebra.
Let X be an NB-algebra. By Theorem 1, for some a e X, x is

defined by a,x. Hence, from (1), we have
x , y=(a, x) (a, y)_y , x.

Hence X is an NBN-algebra. Thus we have the 2ollowing fundamental
Theorem :, Any NB-algebra is an NBN-algebra.
But the converse is not true. To show this, consider the BCK-

algebra X in Example. We define x=a for any x e X. Then the
operation gives an NBN-structure, which is trivial. This is not
interesting, but we cn define a non-trivial NBN-structures on X.
For example, a non-trivial NBN-structure is defined by

0= c=a, a=b=0
as easily verified. This is not an NB-structure on X.

S. Tanaka introduced the notion of a commutative BCK-algebra
(for example, see [2]). By a commutative BCK-algebra X, we mean
a BCK-algebra satisfying

x (x y) y (y x)
for any x, y e X. If we define xAy=x,(x,y), then X is a/-semi-
lattice.

Let X be a commutative, NB-algebra. If x x for some x e X.
By Theorem I and the commuttivity of X, x= 0,x implies

x= x= -0, (0,x)= 0Ax.
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Hence x_ 0.
Conversely, let x_ 0. Then we have

x-- OAx- x.
Hence we have the following

Theorem 4. In a commutative, NB-algebra, the set of involu-
tions, i.e. x--x is given by the set consisting of all elements x such
that x_ 0.
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