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22. A Note on the Large Sieve.
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and Technology, Nihon University

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1979)

1o The purpose of the present note is. to prove a large sieve ver-
sion of a recent sieve result of Selberg [4] by combining his. argument
with that o our preceding note [1] o this series.

Before stating our results we have to introduce some conventions."
For a prime p let Y2(p9 be a set o residues (mod pg, and let us assume
that Y2(p") and 9(p) are disjoint (mod p)whenever 0fla. For a
composite d 9(d) denotes the set of residues (mod d) arising rom those
o 9(p") with p"]]d (the maximum power of p dividing d), and we write
n e 9(d) to indicate that n (mod p") e 9@9 or each p" d; so n e 9(1)
for any n.

Following Selberg we put

O(p) 1 (p) p ,
=1

g(d)=d- {19(p910(p")/O(p"-)},

9(p") being the cardinality of the set; here and in what ollows we
may assume 0(p")0 always.. Also, i d]r, we put

t(r, &= t(p, p), t*(r, d)= t*(p, p),
pllr piir

where t(p", p)= 1 if a=fl, =[9(p") p-" if fl=0, and --I 9(p")[ (O(p)p9-if O<fl<a;t*(p",p)=l if a=fl, =--19(p")l(O(p"-gp")- if fl=0, and
=9(p")I(O(p"-)p")- i 0<fl<a. Further F(n, 9) stands for the sum

E t*(r, u)
neg(u)

which is equal to t*(r, 1) if n e 9(p) or each pIr, (fl > 0).
Then our results are as ollows"
Theorem. Uniformly for any complex numbers a and for any

M, N, Q>O, we have

*
q z(n)F(n, 9)aE’

q z(moq) (q)g(r) <-+
(q,r) =1

(N+Q) laI,
M<nM+N

where is the Eler function, * denotes a sum over primitive
Dirichlet characters Z, and ’ indicates that r is restricted by g(r)

Corollary. If a=0 whenever there exists a p" such that n
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=1, then we have

qrQ z(modq) v(q) (a) (pa-1) M<n_M+N
(q,r) =1

M<nM+N

The function F(n, ) is obtained from the optimization procedure
[4] of Selberg’s weights for the sieve problem with the exclusion
residues {(p")}. And our theorem states that {z(n)F(n, 9)} is a set of
orthogonal pseudocharacters,) provided the conditions given there, the
fact which can be easily generalized for any optimal Selberg weights
(see also [2, Section 2]).

2. To prove the theorem we consider the dual form

D= * ( q )/2(n)F(n, 9)b(r,)l,M(nM+N qrQ z(modq)(q)
(q,r) =1

where b(r, ) are arbitrary complex numbers. And we need following
lemmas

Lemma 1. If v]u, then

E t*(u, )t(, )
0(mod v)

is equal to 1 when u=v, and to 0 otherwise.
Lemma 2. Let us put

f(u, v)= N f(p, p),

where f(p", p)=l(p")[p-" if afl(a--fl)=0, and =0 otherwise. Then
we have

f(u, v)=Z g()t(u, )t(v, ).

Lemma . For any complex numbers c(u, h, ) and for any M, N,
QO, we have

** q .) z(n) exp 2ui n c(u,h,z)
<+ (q)

(N+ Q:) E** c(u, h, z)I,
where ** denotes the sum over uqgQ, (u, q)=l; lghu, (u, h)=l;
primitive Z (mod q).
Lemmas I and 2 are due to Selberg [4], and are immediate consequences.
rom the definitions of unctions relevant to those formulas. Lemma
3 can be reduced to the conventional additive large sieve inequality by
considering the dual form.. Now we estimate D. From the definition of F(n, 9) we have

D= E * z(n)s(u, x)
MnM+N n9(u) %(modq)

uqQ,(u,q) =1

where

1) For this terminology see [3].



94 Y. MOTOHASHI [Vol. 55 (A),

S(U, Z)= b(r, z)t*(r, u).
r_Q/q

r--0(mod u)
(rq) =1

Then, as in [1], we express the characteristic function of the set of
n e tg(u) as. a trigonometrical sum, and we get

M<n_M+N )) z(n) exp 2i n y(u, h, Z)

where ** is defined in Lemma 3, and

y(u,h,z)-- s(w,z)w-1 exp --2i
w_Q/q

w--0(mod u) I2 (w)
(w,q) =1

Hence by Lemma 3
D=(N+ Q2) ** y(u, h, z)12.

Further, expanding out the squares and changing the order of summa-
tions in a suitable manner, we infer without difficulty that

D=(N+ Q2) , ,* S(dl, Z)s(d2, z)f(dl, dO,
dlq’TQ (mod q)
d.q_Q

(did2, q)

where f(dl, d2) is defined in Lemma 2. Thus by the same lemma
D=(N+Q2) , ,, g()l , s(d,z)t(d,)l

q<=Q (mod q) d-0(mod )
(,q) =1 (a,q) =

dQ/q

But the last sum over d is b(, Z), because of Lernrna 1. Therefore we
have obtained

D<=(N-t-Q2) , ,* g(8)lb(8, Z)l2,
q_Q (mod q)
(,q) =1

which is obviously equivalent to the assertion of the theorem.
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