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13. Duality Theorems for Symmetric Differential Forms

By Shigeru IITAKA
Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1979)

In this paper, duality theorems for symmetric (differential) forms
are formulated and proved, which are generalizations of the duality
of plane curves, i.e. the theorem to the effect that the dual curve of
the dual curve of C coincides with C itself.

Our duality theorems include the duality for space curves given
by H. Weyl and J. Weyl in [4, chap. 1].

Discussions with Mr. T. Urabe were very helpful to complete this
paper, to whom the author gives heartfelt thanks.

§1. Let k be a field containing @ and &/k be a field extension
such that & is algebraically closed in . For simplicity, we assume
& has a transcendence basis &, - - -, &, over k. Then, the ring of sym-
metric (differential) forms of & over & SF (R/k) is written in the form

'@[dely tt dgmy dzgl’ ) diejy M ']’
which is isomorphic to the polynomial ring of independent variables
dé, -, dey, -+, dig;, - - - over &, where d is the symmetric derivation
(see [1], [2D).

Thus, SF (8/k) has no zero-divisors and its field of fractions is
denoted by QSF (&/k). We introduce ®: QSF (8/k)—QSF (8/k) by
D, /0,) = (0,dw, — o, dw,) /0t Where o, w, € SF (]/k). Then © is well
defined and k-linear. Further, © satisfies the Leibniz rule, i.e.
D 0)=D() -0+ D(w) for any ¢, w € QSF (K/k).

For simplicity, d is again used to denote ® : QSF (& /k)—QSF (&/k).

Definition. Foranyw, - - -,w, € QSF (8/k), we define W(w,, - - -, »,)
to be the determinant of the matrix [d'~'w,],; ;<;, Which is called the
Wronskian form associated with w,, - - -, w,.

Proposition 1. (i) For any + € QSF ({/k),

WWaw,, -« -, yo)=v"Ww, -, 0,).

(ii) WA, w0, -+, 0)=W(daw,, - -, dw,).

(iii) If w,, - - -, 0, are k-linearly dependent, then W(w,, - - -, w,)=0.
Proofs of the above results are easy and omitted.
By using (i) and (ii), we can compute W(w,, - - -, w;) as follows:

Wan, -, 0) =i (d o ) d(%:))
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o) ae)
=w5(d£2_)l’l. wla—2,
)

w W

Theorem 1. If o, --,0, are k-linearly independent, then
W(w,, - -+, 0)#0.

Proof. We first consider the case [=2. Then we may assume
w,, w, € SF (8/k), which are k-linearly independent. In this case, we
shall prove that W(w,, 0,)#0.

By N, denoting Exponents (a;, -+, a,;, ---) € éZ‘,, Zy={eeZ|a
>0} we introduce the following notation (see [2]):

(i) (dg)¥i=(de)m(dP&)® - - (dEP™i---.

(ii) Letting L=(N,N,,---,N,), we put

(dOF=(d&)M- - - (dsr)™™.

(iii) VN, -+, N, )<, ---,N.) is defined by the existence of 7
such that N,<N;, N;,,=N},;, -+, Np=N,, in which N;=(a, a, - -,
Qpy )< Nj=(y by, -+, b,, --+) is defined by the existence of j such
that a,<b,, a,,,=b,,,, - - -, @,=b,, (for any r>).

(iv) Forw=> ¢, (d&) € SF(8/k)\{0}, define H(w) tobe max {L | ¢,
#0}.  o*=gg.,(dE)* is said to be the highest part of w.

(v) If L=(N,,N,, ---, N,), we put s(L)=max {j|N,+#0}, 0 de-
noting (0,0, --.). When L=(0,0, ---,0), s(L) is defined to be 0.

(vi) If N=(ay, a, ---), we put »(N)=max {j|a;#0}. When
N=(0,0, --.), we define 7(N) to be 0.

(vii) If »(N)>0, then dN is defined tobe (a,, ---,a,_, ¢,—1,1,0,
0, ---) where r=7(N) and N=(a, a, ---,a,,0, ---). Thus H((d&)")
=N, and H(d(d&,)")=dN,, if N,#0.

(viii) If L=(N,N,, ---,N,)+#0, then define dL tobe (N, N,, - - -,
N,_,,dN,, 0, -..,0) where s=s(L). Thus H(d(d&)*)=dL, if L=+0.

Lemma 1. () If v, 0,50 such that H(w)> H(w,), then W(w,, w,)
#0 and HW (0, 0))=dH(w)+ H(w,).

D) If He)=H(w)=H, and of=(d8)Y, of =¢(d&)? with ¢ ¢k,
then W(w, 0,)#0 and HW (w,, 0,))=2H + H((dyp)).

Proof is easy.

If W(w,, w,)=0, then by the above lemma, H(w,)=H(w,)=H and
o¥/w¥ e k. Thus, there exists @ € k such that H(w,—aw,)<H. Hence
W(w,—aw,, w,)#0 if o,—aw,#0. But

W(w,— aw;, 0) =W(wy, 0) —aW(w, 0,)=0.
This is a contradiction. Therefore, W(w,, »,)=0 with w,5=0 implies
that w,=aw, for some a € k.
Now, we prove Theorem 1 by induction on l. If w,, @, - -, w, are
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k-linearly independent, then so are w,/w;, - - -, w;/w;. This implies that
dw,/wy), - -+, Aw;/0,) are k-linearly independent. As a matter of fact,
if there exist @, ---, a;_;€k such that > «,d(o,,/w)=0, then
A3 a0,,,/0)=0. From what we have proved above, it follows that
> a0, =ayw, for some «,, i.e. o, ---,w, are k-linearly dependent, a
contradiction. Therefore, by induction hypothesis, W(d(w,/®)), - - -,
d(w;/w))+#0. Recalling that W(w,, w, - - -, 0) = W(d(w,/0)), - - -, dlw,
/), we complete the proof of Theorem 1.

§2. We fix 1,x, -, %, €& which are k-linearly independent.
Putting W(x)=W(x, x,, - - -, 2,) and W({(dx))=W(dx,, - - -, dx;_i, dx; 1,
.-+, dz,), we define u; to be (—1)!W((dx)")/W(x) for 1<i<n. Then
since

d?x, d?zx, d*x,
dax, da, da, | {W(x) if p=0,
Lo if 1<p<n—1,
dn-—lx1 dn—lx2 dn—lx"
we obtain > z,u,+1=0 and  d?z,-u,=0 for 1<p<n—1. Setting
dPx| d"u=}i d®?x,- d%u,, we obtain the next lemma.

Lemma 2. (I),, d’z|du=0if 1<p+q<n—1.

an, dex|d~*u=(—D’w,, where o,=W(dx)/W(x), and W(dx)
=W(dz, ---,dz,).

Proof. We first prove I, , by induction on q. If ¢=0, this was
already proved. Assume I,, for r<q—1. Then for p+qg<n—1,
dPx|d?'u=—1 or 0, hence O0=d(d?x|d?'u)=d?*'2|d!'u+d?z|du.
Thanks to d**'z |d*'u=0 by I,,,,,_1, We obtain d?z|du=0.

Next, we prove II, by induction on n—p. By the expansion of
W(dx), we have

W(dx)
W(x)
hence II, holds. If II, is true, then from I, ,,_,, it follows that
0= d(d*'x|d"Pu) = dPx|d"Pu + d?~'x|d""?*'u. Hence, d?'x|d" ?*'u
= —d?z|d" Pu=(—1)?"W(dz)/W(z). Q.E.D.
Define the next matrices:
1, Lyy =0y X
Xq, x)=(0, dx, - -, dxn),
0, dx, .-, d'x,

Lyy =y T dxly"': dxn
X(x)z( ), X(dx)z( )

dr e, .-, d* ', drx, ---,d"x,

Then by Lemma 2,

=(=Drdrz|u,
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X(1, 2) X1, w)= dz|d"~'u _ o
drx|u (— Do,
and
0 x| d™u. 0 o
X(2) X (du)= da|d~u - O
dr‘z|du (=" o,

Hence, W(dx)W(du)=w?"* and W(x)W(du)=w*. Similarly, W(uw)W(dx)
=(—D" 0"

Proposition 2. 1,u,, - - -, u, are k-linearly independent.
Proof. Since W(dx)+0, W(x)+0, it follows that W(du)=ow"
/W (dx)=W(dx)y*/ W (x)***+0. Q.E.D.

Theorem 2 (First duality theorem).
x;=(—1D'W{(dw)/ W) for all 1<j<n.
Proof. By I,, of Lemma 2 and z|u+1=0, we have
rlu=> u;-2,=—1,
drlu=3 du; -2,=0,

dlzlu=73 d"“uj ~x;=0.
Thus, z;=(—1)'W({(dw)?)/W(u) for all j.
W(dw) _ 1y,
W (w)
Proof. By X(dx) -‘X(w), we have
W(dx)W(u) = (—1)"w".

Proposition 3. w,=

Thus
_ W(dw) _ W(dx)W(du)
W W(da)W(w)

§3. Let V be a k-vector space with basis {e;, - -+, e,} and ¢, f: V

—V be linear maps such that
(.f'otg)(ei)z(—l)n-iwen—i+an—i+1,ien—-i+l+ ERIEE YA
where ‘g denotes the dual map of g,,, ek, 0ek, and 0<i<n.

Now, we use the following notation to denote vectors in the ex-
terior algebra AV of V over k: for any subset I of N={0,1, -- -, n},
we assume that the elements are arranged by the order of the natural
numbers, i.e. if I is {7, - - -, ¢}, then ¢, <. - - <4,.

cl is defined to be the complement of I in N. For I={i, ---,%},
we put e;=e,;,/\ - - - /\e,;, and define sgn (I) by e;N\e.;=sgn (Iey.

Corresponding to f:V—V, we have f,: A°V—>A*V defined by
JleaN---Ne)=Te )N - Afle,), for any I={i,, - -, i}SN.

Writing f(e)=>.a,e; and fle)=> alle;, we see that af)

=(—1)w,. Q.E.D.
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=det[a,,]i<p,q<s Where I={i, ---,%} and J={j, ---,7}. Letting
a}® =sgn (I) sgn (Na&l®, we define fF: ANV AV by fie)
=Y a¥Pe;. Then f¥of,=(det f)-id, det /' denoting the determinant
of the matrix corresponding to f.

From the hypothesis, we have

(fe'@)sle,,.... 1) =(—D™0’ecq1,... gy

Hence, det f-‘gep,,....s-1) =(— D™’ f¥es0,1,....n-1y and so det f- > 0¥ e,
=(—D"w* 3 afe;, where P={0,1, ---,s—1}, @={0,1, - - -, n—s}, and
I={i,---,1}.

Thus det f- b8, =(— D" ' sgn (Dagi/ .

Applying the above formula to X(1, x)-*X(1, u), we obtain the next
theorem.

Theorem 3 (Second duality theorem). For anyI={i, ---,i} and
CI={j1, Tty jn—s+l}: put MI(x)zw(xip T xix) and Mcl(u)=W(uj1’ R}
U;,_,. ), tn which x, and u, denote 1. Then

W(dx)M () =(—1)"w; sgn ()M ().

§4. Let Z be a non-singular variety such that the field of rational

functions is §. Suppose that z,=1,x, ---, 2, are regular at p, i.e.

Loy Xyy + -5 X, € Og,,. We have the E(=Z‘, kx,)-gap sequence at p. In
7=0

other words, there exists a sequence of (generic) quadric transforma-
tions f;: Z,—Z,;_, whose center are points p, e Z;, which are general
points of f;'(p,_) such that p,=p, Z,=Z and 1<j<n. Letting g=p,
and y=fio---of,: Z,—Z, we have p*:0; ,—0,,, which satisfies
that p*E has a basis {y,=1,¥,, - - -, ¥,} such that v, (y)=0=0,<v,(y,)
=a,<- - <v,(¥,)=0a,,, where v, (y) is the order of ¥ at ¢ (see [1], [2]).
By definition of Theorem 2 in [2], {1,a,, - - -, a,} becomes the E-gap
sequence at p. We define the dual space of £ by o™ (E)=the space
spanned by W(z, ---,2,) where z,e E. Then pg*(o™(E))=0™(¢*E)
has the basis {©;=W®¥e * - s Vi1 Yisw -+ *» Y}, in Which
xaq(a)i)=j;1 a,—n(n—1)/2 for all 0<i<n.
Fi+

Then letting g,=v,(w,_,) for 0<i<n, we have the sequence (8, 5, - - -, 8.),
which is considered as the o™ (EK)-gap sequence at p. The sequence
B=(0,b,, - - -, b,,,) defined by b,=p,_,— p, for 2<i<n+1 is the reduced
sequence of (B, ---,B,) and it is said to be the dual sequence of
A=(,a, ---,a,). B is denoted by A*. Then b;,=a,,,—a,,,_;, for
all 1<j<n+1, and A**=A4.
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