96. On the Mordell-Weil Group of Certain Elliptic Curve

By Fumio Hazama
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1979)

§ 1. Introduction. Let us consider the elliptic curve (1.1) $\quad E_{j}: y^{2}=x^{3}-(27 j / 4(j-1728))(x-1) \quad(j \neq 0,1728, \infty)$ which is a well known example of an elliptic curve defined over $\boldsymbol{Q}(j)$ with the absolute invariant j. For any value of j, the point $P_{0}:(x, y)$ $=(1,1)$ is a Q-rational point of E_{j}. The purpose of this paper is to prove the following

Theorem 1.1. For every $j \in \boldsymbol{Q}(j \neq 0,1728), P_{0}$ is a \boldsymbol{Q}-rational point of E_{j} of infinite order.

Corollary 1.2. For any $j \in \boldsymbol{Q}$, there exists an elliptic curve E defined over \boldsymbol{Q} such that 1) the absolute invariant is j and 2) rank $(E(\mathbb{Q}))$ ≥ 1.
The proof depends on the following remarkable theorem due to Barry Mazur:

Theorem 1.3 (Mazur [6]). The order of a \boldsymbol{Q}-rational torsion point of an elliptic curve defined over \boldsymbol{Q} is one of the following:

$$
\{1,2,3,4,5,6,7,8,9,10,12\} .
$$

For the proof of our theorem, we first show that, in case j is a variable over \boldsymbol{Q}, P_{0} is a rational point of E_{j} of infinite order, by considering the associated elliptic surface over the j-line P^{1}. Given a positive integer m, the set $A(m)$ of $j_{0} \in \boldsymbol{Q}-\{0,1728\}$ such that P_{0} is a point of exact order m on $E_{j_{0}}$ is obviously finite (cf. Proposition 3.2). Then by Mazur's theorem 1.3, $A(m)$ is empty if $m>12$ or $m=11$. Thus we have only to prove that $A(m)$ is also empty for $1 \leq m \leq 10$ or $m=12$. This will be done case by case.

Here the author would like to thank Prof. T. Shioda who provided several valuable suggestions.
§ 2. Rational points on the generic fibre. Put $t=27 j / 4(j-1728)$, then the equation of E_{j} becomes $y^{2}=x^{3}-t x+t$. From now on, we call this E_{t}. We note that if $j=0,1728, \infty$, then $t=0, \infty, 27 / 4$, respectively. We note first the following

Proposition 2.1. $\operatorname{rank}\left(E_{t}(\boldsymbol{Q}(t))\right)=1$, where t denotes a variable over \boldsymbol{Q}.

Proof. Let $B \xrightarrow{\bullet} P^{1}$ be the elliptic surface associated to E_{t}, then we have (Shioda [9])
$\rho=r+2+\sum_{v \in S}\left(m_{v}-1\right)$,
ρ; the rank of $N S(B)$,
r; the rank of $E_{t}(C(t))$,
S; the finite set of points v of \boldsymbol{P}^{1} for which $\Phi^{-1}(v)$ is a singular fibre, m_{v}; number of irreducible components of $\Phi^{-1}(v)$ for $v \in S$.
As is easily seen, the types of the singular fibres are $I I(t=0), I_{1}$ $(t=27 / 4), I I I^{*}(t=\infty)$ in Kodaira's notation ([5]). Therefore $m_{0}=1$, $m_{27 / 4}=1, m_{\infty}=8$. On the other hand, we have $\rho=b_{2}=10$, since B is a rational elliptic surface $\left(t=\left(x^{3}-y^{2}\right) /(x-1)\right)$. Hence the above formula shows that $r=1$. Now the point $(x, y)=(1,1)$ is a $\boldsymbol{Q}(t)$ rational point of E_{t}, which cannot be of finite order since there is a singular fibre of additive type such as $\Phi^{-1}(0)([7],[8])$. Therefore $\operatorname{rank}\left(E_{t}(\boldsymbol{Q}(t))\right)=1$.
Q.E.D.

Actually we can determine the structure of the abelian group $E_{t}(\boldsymbol{Q}(t))$ completely :

Proposition 2.2. $E_{t}(\boldsymbol{Q}(t))$ is an infinite cyclic group generated by $P_{0}=(1,1)$.

Proof (due to N. Maruyama). As is shown in the proof of the above proposition, there is no element of finite order in $E_{t}(\boldsymbol{Q}(t))$. Furthermore we can show that $P_{0} \neq n Q$ for any $n \geq 2, Q \in E_{t}(Q(t))$ as follows. First we recall that the fibre $C=\Phi^{-1}(27 / 4)$:

$$
y^{2} z=x^{3}-(27 / 4) x z^{2}+(27 / 4) z^{3}
$$

(in homogeneous coordinates) is a singular fibre of type I_{1}, i.e. a rational curve with one ordinary double point. Therefore, if we denote by $C^{\#}$ the set of non-singular points on C, there is an isomorphism of $C^{\#}$ to the multiplicative group. By elementary computation, we find that such an isomorphism is given by the following map:

$$
f(x, y, z)=(3 x+2 y-(9 / 2) z) /(-3 x+2 y+(9 / 2) z)
$$

Let us consider the induced group homomorphism

$$
f ; E_{t}(\boldsymbol{Q}(t)) \xrightarrow{\text { restriction }} C^{\#}(\boldsymbol{Q}) \xrightarrow{f} \boldsymbol{Q}(\sqrt{2}) .
$$

Note that $f\left(P_{0}\right)=-(1-\sqrt{2})^{4}$. Suppose that we have $P_{0}=n Q$, for some $Q \in E_{t}(\boldsymbol{Q}(t))$. Then

$$
f(Q)^{n}=f(n Q)=f\left(P_{0}\right)=-(1-\sqrt{2})^{4} .
$$

But since the algebraic integer $1-\sqrt{2}$ is a fundamental unit of $\boldsymbol{Q}(\sqrt{2})$ (cf. [1, Chapter 2, § 5]), n must be 1 or 2 or 4 . The last two cases do not occur because $f(Q)^{n}<0$. This proves that P_{0} is a generator of $E_{t}(\boldsymbol{Q}(t))$.
Q.E.D.
§3. Preliminaries. We use the following propositions to prove our theorem.

Proposition 3.1 (Cassels [2]). Let $P=(X, Y)$ be a point on the elliptic curve

$$
E: y^{2}=x^{3}-A x-B
$$

and let m be a positive integer. Then the point $m P$ has the coordinates $\left(\varphi_{m} \psi_{m}^{-2}, \omega_{m} \psi_{m}^{-3}\right)$ where $\varphi_{m}, \psi_{m}, \omega_{m}$ are polynomials in X, Y, A, B, with integer coefficients such that if $2^{k} \| m$ then $2^{k} \| \psi_{m}(\|$ denotes exact divisibility) and they are given inductively by the relations

$$
\begin{aligned}
& \psi_{1}=1, \quad \psi_{2}=2 Y, \quad \psi_{3}=3 X^{4}-6 A X^{2}-12 B X-A_{2}, \\
& \psi_{4}=4 Y\left(X^{8}-5 A X^{4}-20 B X^{3}-5 A^{2} X^{2}-4 A B X-8 B^{2}+A^{3}\right), \\
& \varphi_{m}=X \psi_{m}^{2}-\psi_{m-1} \psi_{m+1}, \quad 4 Y \omega_{m}=\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}, \\
& \psi_{2 m}=2 \psi_{m} \omega_{m}, \quad \psi_{2 m+1}=\psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} .
\end{aligned}
$$

Proposition 3.2 (Cassels [3]). Let $\left(x_{1}, y_{1}\right)$ be a point of finite order on the E in Proposition 3.1, where $A, B \in Z$. Then $x_{1}, y_{1} \in Z$; moreover $y_{1}=0$ or $y_{1}^{2} \mid D(E)=-4 A^{3}+27 B^{2}$.
§4. Rational points on special fibres. Proof of Theorem 1.1. Now we go back to the elliptic curve (1.1) with $P=P_{0}$. Then $\varphi_{m}, \psi_{m}, \omega_{m}$ in Proposition 3.1 are polynomials in t with integer coefficients. Let us write these $\varphi_{m}(t), \psi_{m}(t), \omega_{m}(t)$.

Lemma 4.1. Let $t_{0} \in \boldsymbol{Q}-\{0,27 / 4\}$. If $P_{0}=(1,1)$ is a point of finite order on $E_{t_{0}}$, then t_{0} must be one of the following values:

$$
\begin{equation*}
t_{0}= \pm 1, \pm 3, \pm 5, \pm 7, \pm 9, \pm 1 / 3, \pm 1 / 5 \tag{4.1}
\end{equation*}
$$

Proof. If $P_{0}=(1,1)$ is a point of finite order m on $E_{t_{0}}$, then $\psi_{m}\left(t_{0}\right)$ $=0$ for $2 \leq m \leq 10$ or $m=12$ by Theorem 1.3 and Proposition 3.1. Here we compute the leading coefficients (=l.c.) and constant terms (= const.) of $\psi_{m}(t)$:

	degree	l.c.	const.		degree	l.c.	const.
ψ_{1}	0	1	1	ψ_{7}	12	-1	7
ψ_{2}	0	2	2	ψ_{8}	15	8	8
ψ_{3}	2	-1	3	ψ_{9}	20	1	9
ψ_{4}	3	4	4	ψ_{10}	24	10	10
ψ_{5}	6	1	5	ψ_{11}	30	-1	11
ψ_{6}	8	6	6	ψ_{12}	35	12	12

We note that $2\left|\psi_{2}, 4\right| \psi_{4}, 2\left|\psi_{8}, 8\right| \psi_{8}, 2 \mid \psi_{10}$ and $4 \mid \psi_{12}$ by (3.1). Therefore t_{0} must be one of the values in (4.1). Q.E.D.

Lemma 4.2. For any value of t_{0} in $(4.1), P_{0}=(1,1)$ is not a point of finite order on $E_{t_{0}}$.

Proof. For $t_{0}= \pm 1, \pm 3, \pm 5, \pm 7, \pm 9$, we can use Proposition 3.2 directly to show $P_{0}=(1,1)$ is not a point of finite order on $E_{t_{0}}$. For instance, if $t_{0}=1$, we get $2 P_{0}=(-1,1), 3 P_{0}=(0,-1), 4 P_{0}=(3,-5)$. But $(-5)^{2} \not \backslash D\left(E_{1}\right)=23$, hence P_{0} cannot be a point of finite order on E_{1} by Proposition 3.2. We sum up the computation for $t_{0}=-1, \pm 3, \pm 5$, $\pm 7, \pm 9$ as follows:

$$
\bar{E}_{-1}: 2 P_{0}=(2,-3),(-3)^{2} \nmid D_{-1}=31 .
$$

$$
\begin{aligned}
& E_{3}: 3 P_{0}=(13 / 9,-35 / 27) \notin Z \times Z . \\
& E_{-3}: 2 P_{0}=(7,-19),(-19)^{2} \nmid D_{-3}=351 . \\
& E_{5}: 2 P_{0}=(-1,-3),(-3)^{2} \nmid D_{5}=25 \cdot 7 . \\
& E_{-5}: 2 P_{0}=(14,-53),(-53)^{2} \nmid D_{-5}=25 \cdot 47 . \\
& E_{7}: 4 P_{0}=(9 / 4,-13 / 8) \notin Z \times Z . \\
& E_{-7}: 2 P_{0}=(23,-111),(-111)^{2} \nmid D_{-7}=49 \cdot 55 . \\
& E_{9}: 2 P_{0}=(7,17), 17^{2} \nmid D_{9}=-3^{6} . \\
& E_{-9}: 2 P_{0}=(34,-199),(-199)^{2} \nmid D_{-9}=3^{6} \cdot 7 .
\end{aligned}
$$

In case $t_{0}= \pm 1 / 3, \pm 1 / 5$, we can transform the coefficients of $E_{t_{0}}$ into integers by appropriate birational transformations fixing zero, therefore by isomorphisms of abelian varieties. Then we can proceed as above.
$E_{1 / 3}: \cong E_{1 / 3}^{\prime}: y^{\prime 2}=x^{\prime 3}-3^{3} x^{\prime}+3^{5}$ by $x^{\prime}=3^{2} x, y^{\prime}=3^{3} y . \quad P_{0}$ corresponds to $P_{0}^{\prime}=(9,27) . \quad 2 P_{0}^{\prime}=(-2,17), 17^{2} \nmid D_{1 / 3}^{\prime}=3^{9} \cdot 77$.
$E_{-1 / 3}: \cong E_{1 / 3}^{\prime}: y^{\prime 2}=x^{\prime 3}+3^{3} x^{\prime}-3^{5}$ by $x^{\prime}=3^{2} x, y^{\prime}=3^{3} y . \quad P_{0}$ corresponds to $P_{0}^{\prime}=(9,27) . \quad 2 P_{0}^{\prime}=(7,-17),(-17)^{2} \nmid D_{1 / 3}^{\prime}=3^{9} \cdot 85$.
$E_{1 / 5}: \cong E_{1 / 5}^{\prime}: y^{\prime 2}=x^{\prime 3}-5^{3} x^{\prime}+5^{5}$ by $x^{\prime}=5^{2} x, y^{\prime}=5^{3} y . \quad P_{0}$ corresponds to $P_{0}^{\prime}=\left(5^{2}, 5^{3}\right) . \quad 2 P_{0}^{\prime}=(-1,57), 57^{2} \nmid D_{1 / 5}^{\prime}=5^{9} \cdot 131$.
$E_{-1 / 5}: \cong E_{-1 / 5}^{\prime}: y^{\prime 2}=x^{/ 3}+5^{3} x^{\prime}-5^{5}$ by $x^{\prime}=5^{2} x, y^{\prime}=5^{3} y . \quad P_{0}$ corresponds to $P_{0}^{\prime}=\left(5^{2}, 5^{3}\right) . \quad 2 P_{0}^{\prime}=(14,-37),(-37)^{2} \nmid D_{-1 / 5}^{\prime}=5^{9} \cdot 139$.
This completes the proof of Lemma 4.2.
Q.E.D.

Theorem 1.1 follows immediately from these two lemmas.
To show the corollary, it suffices to find elliptic curves defind over \boldsymbol{Q} with $j=0,1728$ and rank ≥ 1. But this is a well known fact. For example, if we take $E^{\prime}: y^{2}=x^{3}-2$, and $E^{\prime \prime}: y^{2}=x^{3}-2 x$, then $j\left(E^{\prime}\right)=0$ and $j\left(E^{\prime \prime}\right)=1728$. Moreover, by Proposition 3.2, we see that $(3,5)$ $\in E^{\prime}(\boldsymbol{Q})$ and $(2,2) \in E^{\prime \prime}(\boldsymbol{Q})$ are not points of finite order.
§5. Remark. The family E_{j} (see (1.1)) has connection with the theory of universal families of elliptic curves with level N structure. For $N \geq 3$, there exists such a family E_{N} parametrized by an affine curve C_{N}. Moreover, in case the base field is C, Shioda proved $E_{N}\left(K_{N}\right)$ $\cong(Z / N Z)^{2}$, where K_{N} denotes the function field of the base curve C_{N} (Shioda [9], [10]). On the other hand, there is no such family for N ≤ 2. However, for $N=2$, it is known that the Legendre form, $E_{\lambda}: y^{2}$ $=x(x-1)(x-\lambda)$, gives an "almost" universal family and $E_{\lambda}(k(\lambda))$ $\cong(Z / 2 Z)^{2}$, where k denotes the base field (see [4], [10]). For $N=1$, the situation is quite different. In fact, the family E_{j}, defined by (1.1), for variable j, does have a rational point of infinite order (Proposition 2.1). This observation was the starting point of the present work.

References

[1] Z. I. Borevich and I. R. Shafarevich: Number Theory. Academic Press, New York (1966).
[2] J. W. S. Cassels: A note on the division value of $\mathfrak{p}(u)$. Proc. Cambridge Phil. Soc., 45, 167-172 (1949).
[3] -: Diophantine equations with special reference to elliptic curves. J. London Math. Soc., 41, 193-291 (1966).
[4] J. Igusa: Fibre systems of Jacobian varieties (III. Fibre systems of elliptic curves). Amer. J. Math., 81, 453-476 (1959).
[5] K. Kodaira: On compact complex analytic surfaces. II, III. Ann. of Math., 77, 563-626 (1963) ; 78, 1-40 (1963).
[6] B. Mazur: Modular curves and the Eisenstein ideal. Publ. Math. IHES, 47, 33-186 (1977).
[7] A. P. Ogg: Cohomology of abelian varieties over function fields. Ann. of Math., 76, 185-212 (1962).
[8] I. R. Shafarevich: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Trans., 37 (2), 85-114 (1964).
[9] T. Shioda: On elliptic modular surfaces. J. Math. Soc. Japan, 24, 20-59 (1972).
[10] -: On rational points of the generic elliptic curve with level N structure over the field of modular functions of level N. Ibid., 25, 144-157 (1973).

