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A Class of General Boundary Conditions or
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By Tadashi UENO
College of General Education, University of Tokyo
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1. Let D be the upper half space R+={(x,..., x)e RlxO}
of R, or a bounded open domain with smooth boundary in R, and let

(1) U _Au= , at(x)
t . xix

(t, x).

/ , bi(x) 3u

x (t, x) + c(x)u(t, x)

be a diffusion equation on D with real smooth coefficients defined on
D=DU3D.

Here, we should like to introduce an existence theorem for (1)
with boundary conditions o type
( 2 ) Lu(x) Au(x) -t- (x)Au(x) -t- u/n(x)+[u](x) 0,
where A is an elliptic differential operator with real coefficients on 3D

( 3 ) Au(x) ,(x)Du(x), x e D,
0<lal<2n

Du(x)=3u(x)/@2...,_,,- o=(a, .., a_). {,(y), I<i<N} is a
local coordinate near x 3D, and is also a set of bounded functions on
a neighbourhood of D. (x) is a non-positive function on 3D. u,[u]
is an integro-differential operator of type

(4) ,[u](x)=(-1)/2f (u(y)-- , -u(x)(y))(x, dy),

"-’ . ,(x, .) is a measurewhere (y)=,(y)-.._,(y) and c. =a. .a_
on D\{x} such that, for each neighbourhood U of x e 3D,

(5) (x Y-: ],(y)l++,(y)),(x, dy)+,(x,D\U)<oo.
Ux\{x} <i<N-1

3 is the inward directed normal derivative defined relative to (a,(x)}.

The detailed proof of our existence theorem will be published elsewhere.
In case m=n=l, (2) was obtained by Wentzell [1] as a necessary

condition or positive solutions of (1) on a certain set up. The suf-
ficiency was proved by [1], Ueno [2] or Sato-Ueno [3], Bony et al. [4],
Taira [5], Ueno [6] or [7], and others, under auxiliary conditions..

The results or general m and n in this, paper were motivated by
the method in [7], where (conditional) positive definiteness is essential
instead of the positivity in the case of re=n= 1. Another motivation
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is a theorem of Gelfand-Vilenkin [8], where a conditionally positive
generalized function F of order n, on a certain space of functions, is
characterized by a form

(F,)= aD(O)+f ((x)--c(x) , 1/ D(O)x)(dx),0 lal 2n R{0} 0 lal 2n-1

where a, (x) and r(. ) satisfy certain conditions.
In case m2 or n2, the solutions of (1)-(2) for positive initial

datas are not necessarily positive, and hence the solutions have no
probabilistic meanings in the ordinary sense. But, in view of the
works by Krylov [9], Miyamoto [10] and Hochberg [11], it seems that
the diffusion equation with the boundary condition of type (2) will be
interpreted intuitively in some natural way.

As in the case of m1 and n= 1, the semigroups on the boundary
also exist, and the wave equation with similar boundary conditions
can be solved. These will be discussed in other articles.

2. We assume, for simplicity, that 3D is of class C when D is
bounded, and that the coefficients of A and A and 5(x) are C functions
on D and 3D, and all derivatives of the coefficients are bounded. More-
over, we assume that A is strongly elliptic uniformly on D.

In case D=R, we choose a C function a(x) on [0, ) such that a(x)
=1 when xl, and Oa(x)a/x+ when xl, and put,(y) a([ y x )(y- x), 1<i<N.
In case D is bounded, let {.(y)} be o class C, .(y)0 on D, and
.(y) 0 characterizes OD, and ,(x) 0 or 1<i<N.

Let ,(x, .) and ,(x, .) be the restrictions of ,(x, .) to D and OD,
and let ,[f] and ,[f] be defined as in (4). In case D=R, ,o(x, .) and
,(x, .) are called spatially homogeneous, if there are measures ( )
on OD and ( ) on D such that, for each measurable subset A o D,

( 6 ) ,o(x, {y+xly e A})=0(A),
,(x, {y+xly e A}) =(A), x e OD.

A spatially homogeneous ,(x, .) is called symmetric with respect to x,

;({-YIY e n}) =;(A).
When D=R, let K0 be the set of all real valued rapidly

decreasing unctions of class C on D. When D is bounded, let K0
=C(D). For f and g on D, we write

(f g)= X (Df Dg),

]]f]=(f f)/, f]= (f f)/, ]]f o,= (f f)/, where d2 is the surface
element of 3D. In case D=R, we write, or s0,

(f, g}=((l+]z])f(z), (l+z])d(z)}, f]o,=(f, f)/,
wheref and d are the Fourier transforms of f and g as unctions on
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Proposition 1o Let ,.(f)(x)----| ,(x, dy)f(y) be continuous in
JD

x e D, and let
( 7 ) ,(f)I]

_
C f II, f e Ko.

Let ,(x, .) be spatially homogeneous when D-R+, and let m=O when
D is bounded. Then, for f and g in Ko, and a constant ,
( 8 ) @[f], g[-- (I] f ll" g I] + f 1]0./." g ]]./0.

Proposition 2, Let D=R+. If ,(x,.) satisfies (5) and ,(x,.) is
spatially homogeneous, then, for each 0, there is a constant C, such
that
(9)

that

@o[f], g}l<_s f IIo,,+,/,." gllo,<+,/,.+C, llfllo’llgl o, f, g e Ko.
Proposition 3. Let D=R+, and m/2<s<(m+l)/2. We assume

( ) ,(x, .) is spatially homogeneous,
(ii) there are circular cones C, C, ..., C on 3D with the origin

0=(0, ..., O) as the vertices and with the vertical angles less than /2,
and D= [_) C,

(iii) there is a sequence r=l, r., r, such that
a_.%<r+,<g.r, for O<<a<l, ]=1, 2,

a.rT=’<(CS)<e.r7=’, where CS={x e Cr+<xlr}.
Then, there are constants , and such that, for f and g in Ko,

(10) --@o[f], f}
(11) @[f], g)[ f[." g. We define, for f and g in K0,

(f g) (f g) + (f g. ]), [f] (f f)/,
B(f g)=(ff-Af g)--(Lf g), 20.

Now, we consider the following four cases (I)-(IV).
( I ) D=R. is strongly elliptic of order 2n uniformly on

,(x, ) satisfies (5), ,o(x, ) is spatially homogeneous and symmetric with
respect to x, and ,(x, .) vanishes.

(II) D=R, and n(m+l)/2. A is strongly elliptic of order
2n uniformly on 3D. ,(x, .) satisfies (5), ,0(x, .) is spatially homo-
geneous, and ,(x, .) satisfies the condition o Proposition 1.

(III) D=R, and nm/2. is a differential operator o order
at most 2n on 3D. ,(x,.) satisfies (5), ,(x, .) and ,o(x, .) satisfy the
conditions of Propositions 1 and 3, respectively.

(IV) D is bounded, and m=0. A is strongly elliptic of order 2n
uniformly on 3D. ,[f](x) is continuous for each C function f on D.
,o(x, .) has a symmetric density ,0(x, y) with respect to the surface
element df, and ,,(x, .) satisfies the condition of Proposition 1.

Proposition 4. If one of the conditions (I), (II), (III) and (IV) is

satisfied, then there is a constant 2o0 such that f[]=Bo(f f)/ is a
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norm on K0, and for f and g in K0,
(12)
(13) B(f f) >__ k f ll, _o,
(14) B(f f)>--ll f ll], 2>_20.

When one of (I), (II), (III) and (IV) is satisfied, let H and K be
the completions of K0 with respect to 1] and 1], respectively.
Since it can be proved that ]]z is elosable with respect to 1], K is
imbedded in H, uniquely. By Proposition 4, B(f, g) can be extended
to a bilinear form on K, which, with the same notation, satisfies (12)
-(14) for f, g in K. Moreover, it can be proved as in [7] that the fol-
lowing definition is possible.

Definition. Let (A) be the set of all f in K such that there
are a sequence {f} in K0 and g in H such that lim IIf-fll=0, and

lim {(Aft-g, h)+(Lf, h}=0, for each h e K0.
We define AL by A.f=g for above f in (AL).

Theorem. Under one of the conditions (I), (II), (III) and (IV),
A is the generator of a semigroup {Tt, t>_0} of linear operators on
H, which is strongly continuous in t>_O, and satisfies

]1Tf ]] e f ]], f e H.
The domain (A) is a dense subspace of K.

Remark. If f in K0 satisfies Lf(x)=O on OD, then f belongs to
(A). Conversely, ff f belongs to (Az) K0 and Af is continuous
on D, then. f satisfies Lf(x)=O on OD.

The conditions in Proposition 3 are satisfied in the ollowings.
Example 1. D=R+. 90(" in (6) vanishes on OD({x][x]>l}and

Example 2. D=R+ and 0<a<l. x, and -x, are the points
whose k-th coordinates are a and -a respectively, and other co-
ordinates are 0. 9(. ) is concentrated on {x_,,-x=,,i<_k<_N-1,
]_> 1}, and

9({x,}) 9({- =x,}) ca-"
The author thanks very much to his riends D. Fujiwara, A.

Kaneko and M. Yamasato, who answered very kindly to his questions
related to the present work.
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