89. On Some Series of Regular Irreducible Prehomogeneous Vector Spaces

By Tatsuo Kimura*) and Masakazu Muro**)
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1979)

Let $\boldsymbol{Q}=\boldsymbol{C} \cdot \mathbf{1}+\boldsymbol{C} \cdot \boldsymbol{e}_{1}+\boldsymbol{C} \cdot \boldsymbol{e}_{2}+\boldsymbol{C} \cdot \boldsymbol{e}_{1} \boldsymbol{e}_{2}$ be the quaternion algebra over \boldsymbol{C} defined by $e_{1}^{2}=e_{2}^{2}=-1$ and $e_{1} e_{2}=-e_{2} e_{1}$. Then the conjugate \bar{x} of an element $x=x_{0} \cdot 1+x_{1} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}+x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2}$ of \boldsymbol{Q} is given by $\bar{x}=x_{0} \cdot \mathbf{1}-x_{1} \boldsymbol{e}_{1}-x_{2} \boldsymbol{e}_{2}$ $-x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2}$. We define the Cayley algebra (the octanion algebra) $\mathfrak{R}=\boldsymbol{Q}+\boldsymbol{Q e}$ by $(q+r \boldsymbol{e}) \cdot(s+t \boldsymbol{e})=(q s-\bar{t} r)+(t q+r \bar{s}) \boldsymbol{e}$ for $q, r, s, t \in \boldsymbol{Q}$. Then the conjugate \bar{y} of an element $y=y_{1}+y_{2} \boldsymbol{e}$ of Ω is given by $\bar{y}=\bar{y}_{1}-y_{2} e$ for $y_{1}, y_{2} \in$ \boldsymbol{Q}. Put $A_{1}=\boldsymbol{R} \otimes_{R} \boldsymbol{C}=\boldsymbol{C} \cdot \mathbf{1}, \boldsymbol{A}_{2}=\boldsymbol{C} \otimes_{R} \boldsymbol{C}=\boldsymbol{C} \cdot \mathbf{1}+\boldsymbol{C} \cdot \boldsymbol{e}_{1}, \boldsymbol{A}_{4}=\boldsymbol{H} \otimes_{R} \boldsymbol{C}=\boldsymbol{Q}$ and A_{8} $=\mathfrak{R}_{R} \otimes_{R} C=$, Let V_{l} be the totality of 3×3 hermitian matrices over $\boldsymbol{A}_{l}(l=1,2,4,8)$ and let \boldsymbol{G}_{l} be the group $\boldsymbol{S L}\left(3, \boldsymbol{A}_{l}\right)(l=1,2,4)$ and $\boldsymbol{E}_{6}(l=8)$. Then the group \boldsymbol{G}_{ℓ} acts on V_{l} by $\rho_{l}(g) X=g X^{t} \bar{g}$ for $g \in \boldsymbol{G}, X \in V_{l}$ $(l=1,2,4)$ and $\rho_{8}=\boldsymbol{\Lambda}_{1}$. Moreover, for $n \geq 1$, the group $\boldsymbol{G}_{l} \times \boldsymbol{G L}(n)$ has the action $\rho_{l} \otimes \boldsymbol{\Lambda}_{1}$ on $\boldsymbol{V}=V_{l} \otimes \boldsymbol{V}(n) \cong V_{l} \oplus \cdots \oplus V_{l}$ (n-copies) by $X \mapsto\left(\rho_{l}\left(g_{1}\right) X_{1}\right.$, $\left.\cdots, \rho_{l}\left(g_{1}\right) X_{n}\right) g_{2}$, for $X=\left(X_{1}, \cdots, X_{n}\right) \in \boldsymbol{V}$ and $g=\left(g_{1}, g_{2}\right) \in \boldsymbol{G}_{l} \times \boldsymbol{G L}(n)$. This triplet $\boldsymbol{P}_{l, n}=\left(\boldsymbol{G}_{l} \times \boldsymbol{G} \boldsymbol{L}(n), \rho_{l} \otimes \boldsymbol{\Lambda}_{1}, \boldsymbol{V}_{l} \otimes \boldsymbol{V}(n)\right)$ is a regular irreducible prehomogeneous vector space for $n=1,2$ and $l=1,2,4,8$. In this article, we give the classification of their orbit spaces, the holonomy diagrams and the b-functions of their relative invariants.

In the case of $l=1$, this work was first done by Prof. M. Sato. In the case of $l=2$, this work was first done in the summar seminor for the study of the prehomogeneous vector spaces in 1974 by the participants including the authors, and reported by J. Sekiguchi in [4].
\S 1. Any relative invariant $f(X)$ of $P_{l, n}(n=1,2)$ is written as $f(X)=c f_{l, n}(X)^{m}(c \in \boldsymbol{C}, m \in \boldsymbol{Z})$ with some irreducible polynomial $f_{l, n}(X)$. For an element X of V_{l}, we can define the determinant $\operatorname{det} X$ (see [1]). Then we have $f_{l, 1}(X)=\operatorname{det} X$ for $X \in V_{l} . \quad$ For $n=2, f_{l, 2}(X)$ is given by the discriminant $\left(z_{1}^{2} z_{2}^{2}+18 z_{0} z_{1} z_{2} z_{3}-4 z_{0} z_{2}^{3}-4 z_{1}^{3} z_{3}-27 z_{0}^{2} z_{3}^{2}\right)$ of the binary cubic form det $\left(u X_{1}+v X_{2}\right)=\sum_{i=0}^{3} z_{i} u^{3-i} v^{i}$ for $X=\left(X_{1}, X_{2}\right) \in V_{l} \oplus V_{l}$. We have $\operatorname{deg} f_{l, 1}=3$ and $\operatorname{deg} f_{l, 2}=12$.
§2. Put $\varphi(x)=\binom{x_{0}+\sqrt{-1} x_{1},-x_{2}-\sqrt{-1} x_{3}}{x_{2}-\sqrt{-1} x_{3}, x_{0}-\sqrt{-1} x_{1}}$ for $x=x_{0} \cdot 1+x_{1} \boldsymbol{e}_{1}+x_{2} e_{2}$ $+x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2} \in \boldsymbol{Q}$. This gives an isomorphism $\varphi: \boldsymbol{A}_{4} \leftrightarrows \boldsymbol{M}_{2}(\boldsymbol{C})$ which induces $\boldsymbol{A}_{2} \leftrightharpoons\left\{\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) ; x, y \in \boldsymbol{C}\right\}$ and $\boldsymbol{A}_{1} \Im\left\{\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right) ; x \in \boldsymbol{C}\right\}$. We define the isomor-
*) Department of Mathematics, Nagoya University.
**) Department of Mathematics, Kôchi University.
phism $\Phi: \boldsymbol{M}\left(3, \boldsymbol{A}_{4}\right) \rightarrow \boldsymbol{M}(6, C)$ by $\left(x_{i j}\right) \mapsto\left(\varphi\left(x_{i j}\right)\right)$, which induces $\boldsymbol{S L}\left(3, \boldsymbol{A}_{4}\right)$ $\rightrightarrows S L(6, C)$. Put $J_{1}=\left(1^{-1}\right)$ and $J=\left(\begin{array}{lll}J_{1} & & \\ & J_{1} & \\ & & J_{1}\end{array}\right)$. Let $V(15)$ be the totality of 6×6 skew-symmetric matrices over C. Then, by $X \mapsto \Phi(X) J$, we have $V_{4} \Im V(15)$ and ρ_{4} induces the action Λ_{2} of $S L(6, C)$ on $V(15)$, i.e., $X \mapsto A X^{t} A$ for $A \in S L(6, C)$ and $X \in V(15)$. This implies that $P_{4, n}=\left(\boldsymbol{S L}(6) \times \boldsymbol{G L}(n), \boldsymbol{\Lambda}_{2} \otimes \boldsymbol{\Lambda}_{1}, \boldsymbol{V}(\mathbf{1 5}) \otimes \boldsymbol{V}(n)\right) \quad(n=1,2)$. Now Φ induces $\boldsymbol{S L}\left(3, \boldsymbol{A}_{2}\right) \rightrightarrows\{(B, C) \in \boldsymbol{G} \boldsymbol{L}(3, C) \times \boldsymbol{G} \boldsymbol{L}(3, C) ; \quad \operatorname{det} B \cdot \operatorname{det} C=1\} \quad$ by $\quad\left(a_{i j}\right)$ $\mapsto\left(\left(b_{i j}\right),\left(c_{i j}\right)\right)$ for $\varphi\left(a_{i j}\right)=\left(\begin{array}{cc}b_{i j} & 0 \\ 0 & c_{i j}\end{array}\right)$. By $\left(x_{i j}\right) \mapsto\left(\varphi\left(x_{i j}\right)\right)=\left(\left(\begin{array}{ll}y_{i j} & 0 \\ 0 & z_{i j}\end{array}\right)\right) \mapsto\left(y_{i j}\right)$, we have $V_{2} \leftrightarrows \boldsymbol{M}(3, C)$, and ρ_{2} induces the action $\Lambda_{1} \otimes \Lambda_{1}$ of $S L(3) \times S L(3)$ by $\left(y_{i j}\right) \mapsto\left(b_{i j}\right)\left(y_{i j}\right)^{t}\left(c_{i j}\right)$. This implies that $P_{2, n}=(\boldsymbol{S L}(3) \times \boldsymbol{S L}(3) \times \boldsymbol{G L}(n)$, $\left.\boldsymbol{\Lambda}_{1} \otimes \boldsymbol{\Lambda}_{1} \otimes \boldsymbol{\Lambda}_{1}, V(3) \otimes \boldsymbol{V}(3) \otimes \boldsymbol{V}(n)\right)(n=1,2)$. Clearly, V_{1} is the totality of 3×3 symmetric matrices and $\rho_{1}=\mathbf{2} \boldsymbol{\Lambda}_{1}$, i.e., $P_{1, n}=\left(\boldsymbol{S L}(3) \times \boldsymbol{G L}(n), 2 \boldsymbol{\Lambda}_{1} \otimes \boldsymbol{\Lambda}_{1}\right.$, $\boldsymbol{V}(6) \otimes \boldsymbol{V}(n))(n=1,2)$. The vector space V_{8} becomes the exceptional simple Jordan algebra g by $X \cdot Y=(1 / 2)(X Y+Y X)$ for $X, Y \in V_{8}$.
§3. For $n=1$, it is simple and well-known (see [3]). Put $S_{l, k}$ $=\rho_{l}\left(G_{l}\right) X_{k}$ with $X_{k}=\left(\begin{array}{lll}1 & & \\ & \ddots_{1}^{*} & \\ & & 1 \\ & & 0\end{array}\right) \in V_{l}(l=1,2,4,8 ; 0 \leq k \leq 3)$. Then the
P.V. $P_{l, 1}$ has four orbits $S_{l, k}(0 \leq k \leq 3)$ and their holonomy diagram is given in Fig. 1. Therefore the b-function $b(s)$ is given by $b(s)$ $=(s+1)(s+1+(l / 2))(s+1+l)$.

Fig. 1. Holonomy diagram of $P_{l, 1}$.
§4. Our main purpose is to investigate the case for $n=2$. The classification of orbit spaces are given in Table I. The representative points in Table I are the points in $M(3, C) \oplus M(3, C)\left(\Im V_{2} \oplus V_{2}\right)$. The Zariski-closure of the conormal bundle of the orbit III_{3} is not a good

Table I

	representative points $\left(X_{1}, X_{2}\right)$	orders	codimensions of orbits
I)	$\left(\begin{array}{llll}1 & & \\ & 0 & \\ & & -1\end{array}\right)\left(\begin{array}{llll} & & \\ & 1 & \\ & & -1\end{array}\right)$	0	0
II_{1})	$\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)$	$-s-\frac{1}{2}$	1
II_{2})	$\left(\begin{array}{ll}1 & 1 \\ 1 & \end{array}\right)\left(\begin{array}{l}1\end{array}\right)$	$-2 s-\frac{l+1}{2}$	$l+1$
III ${ }_{1}$)	$\left(\begin{array}{lll} & 1 & 1 \\ 1 & & \end{array}\right)\left(\begin{array}{ll}1 & 1\end{array}\right)$	$-3 s-\frac{3}{2}$	2
III_{2})	$\left(\begin{array}{lll} & 1 & 1 \\ 1 & & \end{array}\right)\left(\begin{array}{l}1\end{array}\right)$	$-6 s-\frac{2 l+4}{2}$	$l+2$
III_{3})	$\left(\begin{array}{lll} & 1 & 1 \\ 1 & & \end{array}\right)\left(\begin{array}{l}0\end{array}\right)$		$3 l+2$
IV ${ }_{0}$)	$\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)\left(\begin{array}{ll}1 & 1\end{array}\right)$	$-4 s-\frac{4}{2}$	4
IV $)_{1}{ }^{*}$	$\left(\begin{array}{ll}1 & 1 \\ & \end{array}\right)\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)$	$-4 s-\frac{4}{2}$	4
IV1)*	$\left(\begin{array}{ll}1 & 1\end{array}\right)\left(\begin{array}{ll}1 & \\ & \\ & 1\end{array}\right)$	$-4 s-\frac{4}{2}$	4
$\underline{I V})^{*}$	$\left(\begin{array}{ll}1 & \\ & \end{array}\right)\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$	$-6 s-\frac{l+5}{2}$	$l+3$
IV ${ }_{2}^{\prime}$ *	$\left(\begin{array}{ll}1 & \\ & \end{array}\right)\left(\begin{array}{ll}1 & 1\end{array}\right)$	$-6 s-\frac{l+5}{2}$	$l+3$
V_{1}^{0})	$\left(\begin{array}{ll}1 & \\ & \end{array}\right)\left(\begin{array}{ll}1\end{array}\right)$	$-8 s-\frac{2 l+6}{2}$	$2 l+2$
$\left.\mathrm{V}_{1}^{1}\right)^{*}$	$\left(\begin{array}{ll}1 & \\ & \end{array}\right)\left(\begin{array}{l}1 \\ \end{array}\right.$	$-8 s-\frac{2 l+6}{2}$	$\frac{5 l}{2}+5$
$\left.\mathrm{V}_{1}^{1}\right)^{*}$	$\left(\begin{array}{ll}1 &)(1)\end{array}\right.$	$-8 s-\frac{2 l+6}{2}$	$\frac{5 l}{2}+5$
V_{2})	$\left(\begin{array}{ll}1 & \\ & \end{array}\right)\left(\begin{array}{ll}1 & 1\end{array}\right)$	$-9 s-\frac{3 l+6}{2}$	$2 l+3$

Fig. 2. Holonomy diagram of $P_{1,2}$.

Lagrangian subvariety (see [2]). The orbits with $*$ do not exist in the case for $l=1$. The orbits IV_{1} (resp. $\mathrm{IV}_{2}, \mathrm{~V}_{1}^{1}$) and $\mathrm{IV}_{1}^{\prime}\left(\right.$ resp. $I V_{2}^{\prime}, \mathrm{V}_{1}^{1}$) are different in the case for $l=2$, but they coincide in the case for $l=4,8$. Remarking these facts, one should see the holonomy diagram of $P_{l, 2}$ for $l=2,4,8$ in Fig. 3.

The holonomy diagram of $P_{1,2}$ is given in Fig. 2. From these

Fig. 3. Holonomy diagram of $\mathrm{P}_{l, 2}(l=2,4,8)$.
diagrams, we obtain the b-function

$$
\begin{aligned}
b(s)= & (s+1)^{2}\left(s+\frac{5}{6}\right)\left(s+\frac{7}{6}\right)\left(s+\frac{l+2}{4}\right)^{2}\left(s+\frac{l+4}{4}\right)^{2} \\
& \times\left(s+\frac{l+1}{2}\right)^{2}\left(s+\frac{3 l+2}{6}\right)\left(s+\frac{3 l+4}{6}\right),
\end{aligned}
$$

i.e., $f_{l, 2}\left(D_{x}\right) f_{l, 2}^{s+1}(x)=b(s) f_{l, 2}^{s}(x)(s \in \boldsymbol{C})$ where

$$
f_{l, 2}\left(D_{x}\right)=f_{l, 2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{N}}\right)
$$

with $N=\operatorname{dim} V_{l} \otimes V(2)=6 l+6$, is a differential operator with constant coefficients (see [2]).

Remark. There exists a following similar series of regular irreducible prehomogeneous vector spaces (see [3] and [5]): (1) (GL(1)× $\left.S p(3), \Lambda_{1} \otimes \Lambda_{3}, V(1) \otimes V(14)\right),(2)\left(G L(6), \Lambda_{3}, V(20)\right),(3)(G L(1) \times \operatorname{Spin}(12)$, $\boldsymbol{\Lambda}_{1} \otimes$ half-spin rep., $\left.V(1) \otimes V(32)\right)$, (4) $\left(G L(1) \times E_{7}, \Lambda_{1} \otimes \Lambda_{6}, V(1) \otimes V(56)\right)$.

References

[1] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).
[2] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima: Micro-local analysis of prehomogeneous vector spaces (preprint).
[3] T. Kimura: The holonomy diagrams and b-functions of regular irreducible prehomogeneous vector spaces (preprint).
[4] J. Sekiguchi: On an example of irreducible prehomogeneous vector spaces. Kokyuroku RIMS, Kyoyto Univ., no. 238, pp. 148-183 (in Japanese).
[5] M. Muro: Some prehomogeneous vector spaces with relative invariants of degree four and the formula of the Fourier transforms (preprint).
[6] -: On prehomogeneous vector spaces related to binary cubic forms. I (to appear in Memoirs of Fac. Sci. Kochi University).

