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88. The Range of Picard Dimensions
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(Communicated by K6saku YOSIDA, M. $. A., Dec. 12, 1979)

1. Densities and Picard dimensions. We will,view the punctured
unit disk/2" 0<]zl<l as an end of 0<lz]-t- c, a parabolic Riemann
surface, so that the unit circle ]z ]-1 is the relative boundary 3/2 of
and the origin z-O is the single ideal boundary c0mpoaent /2 of/2.
A density P on/2 is a nonnegative locally HSlder continuous function
P(z) on 9" 0<lzl_<_l which may or may not have a singularity at
We denote by PP(/2 3t9) the class of nonnegative solutions u of
--Pu oa [2 with vanishing boundary values on 3/2. We also denote by
PP,([2;39) the subclass of PP(tg; 39) consisting of functions u with
the normalization u(a)--1 for some fixed point a in/2. We denote by
ex. PP,(9 3/2) the set of extreme points, ia the convex set PP,(); 39).
The cardinal number #(ex. PP,([2; 3[2)) of ex. PP,(9; 3[2) will be
referred to as the Picard dimension, dim P in notation, of a density
P at
( 1 ) dim P= #(ex.
It is. easily seen (cf. e.g. [7]) that dim P>=l for any density P on
A density P on/2 with dim P-1 is said to satisfy the Picard principle
at

2. Problem and result. We denote by (/2) the class of densities
on 9. Consider the mapping dim" (tg)-+{cardinal numbers} defined
by PdimP. We proposed to study the range dim_q)(tg)-{dimP;
P e _q)(9)} of the mapping dim in our former paper (cf. [5]). Virtually
nothing has been known on dim (/2) except for the following simple
fact (cf. [4], [6], [2])"

dim P= {1 (2)
c (>2)

where P is the density on/2 give by P(z)=lzl- or rel numbers
and is, the eardi’nal number of continuum. In view of this our pro-
blem is to determine whether the range dim(9) contains cardinal
numbers between 1 and c. Specifically we are interested in the question
whether dim_q)(tg) contains every countable cardinal numbers , i.e.
=n, a positive integer, or =, the cardinal number of countably
infinite set. The purpose of this note is to announce and also to give
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an outline of the proof of the following
Theorem. There exists a density P on [2 for any countable

cardinal number such that dim P-. Therefore the range dim
contains every positive integer n, a, and c.

Actually the author has been studying the Picard principle
motivated by the feeling that dim P is either I or . Therefore the
above result is rather surprising to the author. Once the situation
turned out to be as mentioned above, the determination of those
densities P with e.g. dim P-2 is equally important to that of those
densities with the Picard principle, and te study of Picard principle
ought to take these new dimensions into account.

3. Relative harmonic dimensions. A sequence (Kn} of continua
Kn in/2 will be referred to as a -sequence in f2 if Kn Q K--t (n:/: m),
W--/2-J Kn is connected, and (K} converges to f2. We denote by
j/(/2) the set of j/-sequences in/2. T:he relative boundary 3W of the
region W---) Kn for a -sequence (Kn} is 3W= (3/2) U (]o 3K).
We then consider the class HP(W; 3W) of nonnegative harmonic func-
tions on W with vanishing boundary values on 3W and the subclass
HP(W;3W) of HP(W; 3W) consisting of those functions, with the
normalization u(a)-1 for some fixed point a in W. Similarly to the
Picard dimension we define the relative harmonic dimension, dim {K}
in notation, of a -sequence (K} at 2 by
( 2 ) dim {K}--#(ex. HPI(W; 3W)).
It is easy to see that dim {K}>=I for any o-sequence (K} in /2. We
will see (cf. the last part of no. 5 below) that the range dim j/(f2) of
the mapping dim" (f2)--{cardinal numbers} also contains every
countable cardinal number. The question of the range of relative
harmonic dimensions formally resembles to that of harmonic dimen-
sions of ends of infinite genus studied by Heins, Kuramochi, Ozawa,
Constantinescu-Cornea, and others. We have positively settled the
question whether c belongs to dim (/2) or not. The question seems
to have a close bearing with the Kobe mapping problem onto the circle
regions.

4. Canonically associated densities. Suppose that each con-
tinuum Yn in a -sequence (Y} in/2 is the closure of a Jordan region

Y in /2 (n-l, 2,...). Such a -sequence will be refferred to as a
-sequence in and we denote by c() the class of C-sequences in
/2 so that (2)c(/2). Consider the region W=/2-U Y for a
sequence {Yn} and a density P on/2 such that supp. PcU Yn=tO--W.
We denote by H for each u in PP(tg;9) the least nonnegative
harmonic ffinction on W with boundary values u on 3W (cf. e.g. [1]).
It is the lower envelope of the family of superharmonic functions s on
W with the lower limit boundary values of s on 3W is not less than
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ulW. Then the function Tu=u--H belongs to the class HP(W; 3W)
for every u in PP(9 Y2), anduTu defines a mapping Te" PP(D"
--HP(W;3W). It is easy to see that the mapping T is order-
preserving (i.e. u<=u implies Tu<=Tu), positively homogeneous
(i.e. T(2u)=2T,u for nonnegative real numbers 2), and additive (i.e.
T(u+u)=Tu+ Tu). In general T may or may not be injective
and similarly surjective. If the mapping T happens to be bijective,
then the density P is said to be canonically associated with the
sequence {Y}. If a density P on Y2 is canonically associated with a
-sequence {Y}, then it is easy to see that
( 3 ) dim P-dim { Y}.

5. Outline oI the proof. We denote by Py the solution of
Pu on an analytic Jordan region U with U/2 with boundary values

f on 3Uwhere P is a density on Y) and f is in C(3U). Given any
Jordan region Y with Yc U and any positive number , there exists
a density P=P,r,, on Y) with supp. Pc Y and

(4) supr IP[= I" [fl d
du

for any f in C(3U), where dw is the harmonic measure on 3U with
respect to U evaluated at a fixed point in U. We only have to ehoose
P sufficiently large in Y so that it is qualified as P in the above asser-
tion. The technical detail for the construction is similar to that
employed in [3] in a similar but slightly different setting. Let {}
be any c/I-sequence on/2 and U be a slightly larger analytic Jordan
region in tO than Y containing Y (n- 1, 2, ). Using the densities P
satisfying (4) for U-- U, Y--- Y, and e-e (n- 1, 2, .), we construct
a density P on D by -]n P. If the sequenee {n} is chosen to converge
to zero sufficiently rapidly, then it is seen that the sequence {supr u}
converges to zero for any u in PP(/2 3/2). From this it follows that
T, is bijective and therefore P is canonically associated with {Y}. In
view of this and (3), the proof of the theorem is reduced to showing
that dim c5](2) contains any countable cardinal number. In passing
we remark that c/](/2)cj(t2) implies that dim(D) contains any
countable cardinal number along with dim c5](D). Thus the proof of
the theorem will be complete if we show an example of C-sequenee
{Y} with dim {Y}:m, any positive integer, or a.

6. Example 1. First we exhibit an example of a ct]-sequence
{Y}? with dim {Y}=m for any given positive integer m=1,2, ....
Fix a sequence {a,}[ in (0, 1) with a,/<a, (/= 1, 2, .) and lim,_
=0. Wechooseasequence{b,}Tin(O, 1)witha,/<b,<a,(p=l, 2, ...).
Let t=2z(,--1)/m (,=1, 2, ..., m), be in (O,z/m), and

S,:{b<lz[<a,, larg z-t[<]}.
Observe that any positive integer n has a unique expression n= (/-1)m
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+(--1) with positive integers/ and , with l<__<m. We set
Y,=S,. (n= (/- 1)m+(- 1)).

Then the sequence {Y}=={S,} (, 1, 2, ., m ;/ 1, 2, ) is clearly
a -sequence. If we choose the sequence {b,} so as to make the
sequence {b,-a,/};= convergent to zero ’enough’ rapidly, then we can
show that dim {S,}=m. If 9 is irregular for the Dirichlet problem
for the region 9--) , (i.e. if {b,} is so chosen), then it is well known
that dim {E,}= 1. We suspect that dim {E,} is either I or m no matter
how we choose {b,} but we are unable to prove it t present.

7. Example 2. Next we exhibit an example of qJ-sequence
{F}L- with dim {F}=. Fix again a sequence {a} in (0, 1) with
a,/<a (re=l, 2, ...) and lim. a=0. We choose a sequence {b}?
in (0, 1) with a/<b<a (m= 1, 2, .) in a suitable fashion. We
also fix sequences {} and {} in [0,2) such that =0,
(n=l, 2, ...), and lim_ =2=. Let

S={b<lzl<a, <arg z<r} (m=n).
Observe that any positive integer k has a unique expression k=m(m
--1)/2+n with positive integers m and n satisfying m>=n. Then we
set

Y=S (k=m(m-1)/2+n).
The sequence {F}__={} (mn; m, n=l, 2,...) is clearly a
sequence. We choose {b} so as to make the sequence {b-a/}=
convergent to zero ’enough’ rapidly, then we can show that dim {S}

In verifying that the examples 1 and 2 are required ones, the
following simple fact (cf. e.g. [1]) plays an important role. Let
{U,}? be a sequence of disks U with /2 such that
(n==/:m) and (} converges to D. Consider a region W=D-K
for a 5-sequence {K} in/2. Set V=W U and V- V. Let q
be a Martin boundary point of the region W lying over D. If q does
not belong to the closure (W-V) of W-V considered in the Martin

compactification of W, then q is not a minimal point.
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