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88. The Range of Picard Dimensions™
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1. Densities and Picard dimensions. We will view the punctured
unit disk 2:0<|z|<1 as an end of 0<|z|< + o0, a parabolic Riemann
surface, so that the unit circle |2|=1 is the relative boundary 92 of 2
and the origin z=0 is the single ideal boundary component 52 of Q.
A density P on Q2 is a nonnegative locally Holder continuous function
P(2) on £:0<|z|<1 which may or may not have a singularity at 52.
‘We denote by PP(2;02) the class of nonnegative solutions « of du
=Py on. 2 with vanishing boundary values on 82. We also denote by
PP,(2;0%2) the subclass of PP(Q2;02) consisting of functions % with
the normalization u(a)=1 for some fixed point a¢ in 2. We denote by
ex. PP,(Q;0Q2) the set of extreme points in the convex set PP,(2; 092).
The cardinal number #(ex. PP,(2;02)) of ex.PP,(2;02) will be
referred to as the Picard dimension, dim P in notation, of a density
Patof:

(1) dim P=#}(ex. PP (92 ; 3%2)).

It is easily seen (cf. e.g. [7]) that dim P>=1 for any density P on 2.
A density P on 2 with dim P=1 is said to satisfy the Picard principle
at 00.

2. Problem and result. We denote by 9(£2) the class of densities
on 2. Consider the mapping dim: P(2)—{cardinal numbers} defined
by P—dim P. We proposed to study the range dim D(2)={dim P;
P e D)} of the mapping dim in our former paper (cf. [5]). Virtually
nothing has been known on dim 9D(2) except for the following simple

fact (cf. [4], [6], [2]):
dim P, = {: (=2)

(2>2)
where P, is the density on 2 given by P,(z)=|z|"* for real numbers 1
and c is the cardinal number of continuum. In view of this our pro-
blem is to determine whether the range dim 9(2) contains cardinal
numbers between 1 and c. Specifically we are interested in the question
whether dim 9(2) contains every countable cardinal numbers &, i.e.
&=m, a positive integer, or £=a, the cardinal number of countably
infinite set. The purpose of this note is to announce and also to give
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Japan Ministry of Education, Science, and Culture.
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an outline of the proof of the following

Theorem. There exists a density P, on 2 for any countable
cardinal number & such that dim P.,=¢&. Therefore the range dim 9D(2)
contains every positive integer n, a, and c.

Actually the author has been studying the Picard principle
motivated by the feeling that dim P is either 1 or ¢. Therefore the
above result is rather surprising to the author. Once the situation
turned out to be as mentioned above, the determination of those
densities P with e.g. dim P=2 is equally important to that of those
densities with the Picard principle, and the study of Picard principle
ought to take these new dimensions into account.

3. Relative harmonic dimensions. A sequence {K,}; of continua

K, in Q will be referred to as a K-sequence in Q if K, N K, =0 (n=m),
W=02—\s K, is connected, and {K,} converges to §2. We denote by
K(2) the set of K-sequences in 2. The relative boundary oW of the
region W=02—\ 7 K, for a K-sequence {K,}7 is dW=(2) U (U5 0K,).
We then consider the class HP(W ; 0W) of nonnegative harmonic func-
tions on W with vanishing boundary values on 6W and the subclass
HP (W ;oW) of HP(W ;dW) consisting of those functions with the
normalization w(a)=1 for some fixed point ¢ in W. Similarly to the
Picard dimension we define the relative harmonic dimension, dim {K,}
in notation, of a K-sequence {K,} at 022 by
(2) dim {K,}=#(ex. HP,(W ; aW)).
It is easy to see that dim {K,}=1 for any K-sequence {K,} in £. We
will see (cf. the last part of no. 5 below) that the range dim K (2) of
the mapping dim: K(2)—{cardinal numbers} also contains every
countable cardinal number. The question of the range of relative
harmonic dimensions formally resembles to that of harmonic dimen-
siohs of ends of infinite genus studied by Heins, Kuramochi, Ozawa,
Constantinescu-Cornea, and others. We have positively settled the
question whether ¢ belongs to dim K(£2) or not. The question seems
to have a close bearing with the Kobe mapping problem onto the circle
regions.

4. Canonically associated densities. Suppose that each con-
tinuum Y, in a K-sequence {Y,} in 2 is the closure of a Jordan region
Y,in 2 (n=1,2,.-.). Such a K-sequence will be refferred to as a
Y-sequence in 2 and we denote by UY(2) the class of Y-sequences in
2 so that YD) K(2). Consider the region W=0—( J; Y, for a Y-
sequence {Y,} and a density P on 2 such that supp. PC Uy Y, =2 —W.
We denote by HY” for each u in PP(Q;02) the least nonnegative
harmonic function on W with boundary values « on éW (cf. e.g. [1]).
It is the lower envelope of the family of superharmonic functions s on
W with the lower limit boundary values of s on oW is not less than
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u|0W. Then the function T, u=u—HY belongs to the class HP(W ; oW)
for every u in PP(2 ; 9R2), and u— T »u defines a mapping T,: PP(2:00)
—HP(W ;0W). It is easy to see that the mapping T, is order-
preserving (i.e. u,<u, implies T,u,<T u,), positively homogeneous
(i.e. Tpx(Au)=2AT »u for nonnegative real numbers 1), and additive (i.e.
To(u+u,)=Tpu,+Tpu;). In general T, may or may not be injective
and similarly surjective. If the mapping T, happens to be bijective,
then the density P is said to be canonically associated with the Y-
sequence {Y,}. If a density P on £ is canonically associated with a
QJ-sequence {Y,}, then it is easy to see that

(3) dim P=dim {Y,}.

5. OQutline of the proof. We denote by PY the solution of Adu
=Py on an analytic Jordan region U with U C 2 with boundary values
f on oU where P is a density on £ and f is in C@U). Given any
Jordan region Y with YC U and any positive number ¢, there exists
a density P=P, ,, on 2 with supp. PCY and

(4) sup, |PY|<s [ |7]doy

for any f in C(@U), where dw, is the harmonic measure on dU with
respect to U evaluated at a fixed point in U. We only have to choose
P gufficiently large in Y so that it is qualified as P in the above asser-
tion. The technical detail for the construction is similar to that
employed in [3] in a similar but slightly different setting. Let {Y,}
be any 4J-sequence on 2 and U, be a slightly larger analytic Jordan
region in 2 than Y, containing Y, (n=1, 2, - - -). Using the densities P,
satisfying (4) for U=U,, Y=Y,, and e=¢, (n=1,2, - - .), we construct
a density P on 2 by >, P,. If the sequence {¢,} is chosen to converge
to zero sufficiently rapidly, then it is seen that the sequence {supy, u}
converges to zero for any « in PP(2;92). From this it follows that
T, is bijective and therefore P is canonically associated with {Y,}. In
view of this and (8), the proof of the theorem is reduced to showing
that dim 4J(£2) contains any countable cardinal number. In passing
we remark that Y@Q)C KH(2) implies that dim K(2) contains any
countable cardinal number along with dim @J(2). Thus the proof of
the theorem will be complete if we show an example of 4j-sequence
{Y,} with dim {Y,}=m, any positive integer, or a.

6. Example 1. First we exhibit an example of a 4/-sequence
{Y,})r with dim {Y,}=m for any given positive integer m=1,2, - - -.
Fix a sequence {a,}; in (0,1) with a,,,<a, (¢=1,2,--) and lim,_.. a,
=0. Wechoosea sequence {D,} in (0, 1) witha,,,<b,<a,(¢=1,2, ---).
Let 6,=2z(»—1)/m (v=1,2, - - -, m), 5 be in (0, z/m), and

S,,u={b,,<|z|<a,,, |argz——0pl<77} .
Observe that any positive integer # has a unique expression n=(p—1)m
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+(—1) with positive integers ¢ and v with 1<y<m. We set
Yn_=S,,p _(n=(1u—1)m+(v—1))-

Then the sequence {Y,};_,={S,.} ¢*=1,2, ---, m; p=1,2, - - -) is clearly
a 4J-sequence. If we choose the sequence {b,} so as to make the
sequence {b,—a,,,};-, convergent to zero ‘enough’ rapidly, then we can
show that dim {S,,}=m. If 62 is irregular for the Dirichlet problem
for the region 2—J S,, (i.e. if {b,} is so chosen), then it is well known
that dim {S,,}=1. We suspect that dim {S,,} is either 1 or m no matter
how we choose {b,} but we are unable to prove it at present.

7. Example 2. Next we exhibit an example of 4j-sequence
{Y}i., with dim{Y,}=a. Fix again a sequence {a,}; in (0,1) with
O 1 <O (m=1,2, -..) and lim,,_.., a,,=0. We choose a sequence {b,};
in (0,1) with a,,.,<b,.<@, (m=1,2,...) in a suitable fashion. We
also fix sequences {¢,} and {z,} in [0, 27) such that ¢,=0, ¢,<7,<0,.:
n=12,-..), and lim,_.. ¢,=2rx. Let

S =1{0,<|2|<tp, 0,<argz<c,}  (mzn).
Observe that any positive integer & has a unique expression k=m(m
—1)/2+4n with positive integers m and n satisfying m=n. Then we
set
Y.=8S,. (k=m(m—1)/2+n).

The sequence {Y,}i,={Sn.} (m=n;m, n=1,2,-..) is clearly a Y-
sequence. We choose {b,} so as to make the sequence {0, —pn.i}mn-1
convergent to zero ‘enough’ rapidly, then we can show that dim {S,,,}
=a.

In verifying that the examples 1 and 2 are required ones, the
following simple fact (cf. e.g. [1]) plays an important role. Let
{U,)}¢ be a sequence of disks U, with U,C2 such that U,NU,=0
(n#m) and {U,} converges to 2. Consider a region W=02—-{J; K,
for a K-sequence {K,} in 2. Set V,=WNU, and V=7 V,. Let ¢
be a Martin boundary point of the region W lying over 62. If q does
not belong to the closure (W —V)* of W—V considered in the Martin
compactification of W, then ¢q is not a minimal point.
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