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1. Introduction. In the course of the investigation of the limit
theorems of the decomposable Galton-Watson processes, the author
[1] has found a class of the infinitely divisible distributions closely
related to the following Riccati equations.

Let

1.1) #(t)=>" a,t", B>0 and m=0
n=0

be given. We assume that every a,=>0 and ¢(¢) converges for all ¢.
Let (¢, 2), t=0, be the solution of

1.2) —g{w(t, D=—Byt, V+dd®)2, w0, D=m2,

with 1=>0 being a parameter.

Then we have

Theorem 1. (i) For each t>0, there exists a probability
measure P, on [0, oo) such that

(1.3) I: ¢ P (d) = exp {— f : (s, z)ds}.

(ii) P, is infinitely divisible.

(iii) The Lévy measure n, of P, has the finite moments of all
order.

The probabilistic proof of (i) will be given in a forthcoming
paper [1]. An alternative proof, which can be applied to more gen-
eral equations, was given by T. Watanabe [2]. If we assume (i), (ii)
is easily seen from av(¢, 2; ¢, B, m)=+(t, 1; ag, a B, am) for any a>0.
(iii) follows from the fact that (¢, 2) is C~ at 1=0.

The purpose of this paper is to show the following

Theorem 2. Suppose that f} a,>0. Then there exists d(t)>0
n=0
such that
(1.4) [ ePu(da)|zexp (— eIz,
0

for all sufficiently large |2|. Therefore P, is absolutely continuous
with respect to the Lebesgue measure and the density belongs to
C>(R).



372 S. SUGITANI [Vol. 55(A),

Remark. If Zw] a,=0 and m>0, it is easily seen that P, is a
n=0

gamma distribution and the density belongs to C~(R—{0}).

2. Proof of Theorem 2. We first state a lemma which will be
shown in § 3.

Lemma 2.1.

@D lmG/ D ﬁ w(s, 2)ds=J: VBIE)ds>0,  £>0.

Without loss of generality we assume that {=1. By Theorem 1,
there exists ¢=0 and a measure n(dy) on [0, o) with n({0})=0 such
that

f: W(s, Dds= cz+f: (1— e~ "n(dy).
But by (2.1), we have ¢=0 and so
@.2) [ w5, nds=[ a—e @ =1 emwa,
where n(y)=n((y, )). Hence by (2.1), we have
2.3) lim 7 [ e“”n(y)dy=£ VBIH(s)ds=A,>0.

A— o0

Therefore by Theorem 4.3 in [3, p. 192],
3

@.4) lim (/)" " n(@)dz= F(E>_1A‘EA2>O.
Since 2“‘yn(2"‘y)gﬁ~w w(@)dz=2"'yn(y), we have by (2.4),
(2.5) 4A2>T3jnol «/7%(?/)%1%1 VYn@)>27(W 2 —1DA,=4,>0.
Take vA,<47'A;'A,, then it follows from (2.4) and (2.5) that
2.6) f " #n(d?) =ﬁ’ 22(n(z) — n(y))dz gj‘:‘” 22(n(A ) —n(y))dz

=AW (A Y) — ) Z AWANVAY) " —44,(W Y )™

EAs\/ y-s’
for all sufficiently small y. Therefore we have

2.7 U: e P(dx) }——-exp {—-J: (1—cos (ly))n(dy)}

<exp {—f:l_l 4“‘12y2n(dy)} <exp {—4"'AW|2]},

for all sufficiently large |A|.
3. Proof of Lemma 2.1. In this section, +,(¢, 1) denotes the
unique solution of

3.1) d%wm(t, D= —Byn(t, V9B, pn(0, D=mA.

Proposition 3.1.
3.2) 0< vt VSVB$®2,  t=0.
3.3) }5{1 W ) (t, D=+B¢(?), t>0.
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The convergence in (3.3) is monotone.

ma
(3.4 0=, (t, D—no(t, z)gm

We first prove Lemma 2.1, assuming Proposition 3.1. If m=0,
then (2.1) follows from (8.2) and (8.3). If m>0, then (2.1) follows
from the result of the case m=0 and (3.4).

We now proceed to the proof of Proposition 3.1. By (8.1),

Vot z)=ﬁ 24(s) exp {—f‘ By(r, Z)dr}dsg 0. If there exists T>0 such
that yo(T, )>vVB7 g7, set ty=sup (t< T ; vo(t, V<+Bg@®7}. Then
we get a contradiction ;

VolT, D)=l z)+jf (= Bynlt, -+ $ON

Sty DSVB'$(t)AZV B '¢(T)2A.
Next we shall show (8.3). Set

£=0.

(8.5) 0(t, D= 2)""(t, D).
By (8.2), we have
(3.6) 0=<0(t, DS VB 9(2).

0(t, 2) satisfies
d%a(t, D=+ 7 (—BO(t, 2+ ¢(8) =0,

3.7
6(0, 2)=0.

Differentiating with respect to 2

9 a0 -

t, D)= “(—B(t, 1) t),

at a,2( ) ( (&, D+ 4(1)

—(0, »=0.

2 ( )

Since — B4, )*+¢(t)=0 by (3.6),

Zz (t, )=0 and hence 6(t, 1) is in-

creasing in 2. If we set p({)=Ilim (¢, 2), then by (3.2) and (3.7), we
A—>o0

have
3.8 O=1im A7 W(8, 2)=1im W 2)76(t, 2)

—lim ( BO(s, '+ §(s))ds— J:(—Bp(s)2+¢(s))ds.

=00

Therefore we have

3.9) 7(t)=+B~'¢(t) a.e. t.

Since both sides in (3.9) are increasing and the right side is continuous,
(3.9) holds for all ¢>>0. This completes the proof of (3.3). By the
uniqueness of the solution of (8.1) we have (¢, )=, ). Set &(t)
=Y ,(t, ) —o(t, 2). Then by (3.1),
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;l—‘lf(w: — Bt D— oty D)ty Doty D) < — BEEY,

which implies (3.4).
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