The purpose of this note is to prove the following

Theorem. The only integer solutions of the Diophantine equation

\[3y^2 = x^3 + 2x \]

are given by \(x = 0, 1, 2 \) and \(24 \).

By a classical theorem of A. Thue on the elliptic Diophantine equation we know that the equation (1) has only finitely many solutions in integers \(x \) and \(y \). In order to effectively determine all the solutions of (1), we shall make use of some results due to W. Ljunggren [1], [2], and [3].

We write the equation (1) in the form

\[y^2 = \frac{1}{3} x(x^2 + 2) \]

and distinguish three cases according as \(x \equiv 0, 1 \) or \(2 \) (mod 3).

Solutions with \(x \equiv 0 \) (mod 3). Write \(x = 3x_1 \). We have then \(y^2 = x_1 \cdot (9x_1^2 + 2) \), where \(d = \text{g.c.d.} \ (x_1, 9x_1^2 + 2) = 1 \) or \(2 \).

If \(x_1 \) is an odd integer, then \(d = 1 \) and we have \(x_1 = Y^2, 9x_1^2 + 2 = X^2 \) for some integers \(X, Y \) with \(\text{g.c.d.} \ (X, Y) = 1 \). Eliminating \(x_1 \) from these equations, we get \(X^2 - 9Y^2 = 2 \); but this equation has no integer solutions \(X, Y \), since the congruence \(X^2 \equiv 2 \) (mod 3) is insoluble.

If \(x_1 \) is an even integer, then \(d = 2 \) and so \(x_1 = 2Y^2, 9x_1^2 + 2 = 2X^2 \) for some integers \(X, Y \) with \(\text{g.c.d.} \ (X, Y) = 1 \). Eliminating \(x_1 \), we get the equation

\[X^2 - 18Y^4 = 1, \]

which can be rewritten in the form \(X^2 - 2(3Y^2)^2 = 1 \).

Now, the solutions in non-negative integers \(u, v \) of the equation

\[u^2 - 2v^2 = 1 \]

are given by \(u = u_{2m}, v = v_{2m} \) \((m = 0, 1, 2, \ldots)\), where

\[u_n + \sqrt{2} v_n = (1 + \sqrt{2})^n \quad (n = 0, 1, 2, \ldots). \]

The sequences \(u_n, v_n \) are determined by the relations

\[u_0 = 1, \quad u_1 = 1, \quad u_{n+1} = 2u_n + u_{n-1} \quad (n \geq 1), \]
\[v_0 = 0, \quad v_1 = 1, \quad v_{n+1} = 2v_n + v_{n-1} \quad (n \geq 1). \]

Lemma 1. We have for all \(m \geq 0 \)

In fact, the equation (1) arises from a problem concerning MacMahon's 'chromatic' triangles in graph theory and, according to M. Gardner, it is known that the only solutions of (1) with \(x \leq 5,000 \) are as listed in the theorem.
g.c.d. \((u_m, v_m) = \text{g.c.d.} \ (u_m, u_{2m}) = \text{g.c.d.} \ (u_{2m}, v_m) = 1.\)

Proof will be easily carried out by noticing the relations
\[u_n^2 - 2v_n^2 = (-1)^n \quad (n \geq 0) \]
and
\[u_{2n} = u_n^2 + 2v_n^2 \quad (n \geq 0) \]
which is a special case of
\[u_{m+n} = u_m u_n + 2v_m v_n \quad (m, n \geq 0). \]

Lemma 2. We have
\[u_n \equiv 0 \pmod{3} \quad \text{if and only if } n \equiv 2 \pmod{4} \]
and
\[v_n \equiv 0 \pmod{3} \quad \text{if and only if } n \equiv 0 \pmod{4}. \]

Proof. Indeed, we observe that
\[
\begin{array}{cccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
u_n & 1 & 1 & 0 & 1 & 2 & 2 & 0 & 2 \\
v_n & 0 & 1 & 2 & 2 & 0 & 2 & 1 & 1 \\
\end{array}
\]
(mod 3)

This can be readily verified by making use of the defining relations for \(u_n\) and \(v_n\), or of the relations (5) and
\[v_{m+n} = u_m v_n + u_n v_m \quad (m, n \geq 0). \]

Now suppose that we have \(v_{4m} = 3Y^2 \ (m \geq 0)\) for some integer \(Y\). Here \(v_{4m} = 4u_m u_{2m} v_m\) since we have, by (6), \(v_{2m} = 2u_n v_n\) for all \(n\).

Case 1. \(m \equiv 0 \pmod{4}\). In this case \(v_m\) is a multiple of 3 by Lemma 2, and we have by Lemma 1
\[
\begin{align*}
u_m &= r^2, \\
u_{2m} &= s^2, \\
v_m &= 3t^2
\end{align*}
\]
for some non-negative integers \(r, s, t\) with \(2rst = Y\). Putting these into the relations (3) and (4) (both with \(n = m\)) gives
\[
r^4 - 18t^4 = 1 \quad \text{and} \quad s^4 = r^4 + 18t^4.
\]
Eliminating \(t\) from these equations, we thus obtain the equation
\[s^4 = 2r^4 - 1. \]

W. Ljunggren \[\text{[2, \S 2]}\] has proved that the only solutions in positive integers (or, equivalently, non-negative integers) \(r, s\) of the equation (7) are
\[
(r, s) = (1, 1) \quad \text{and} \quad (13, 239);
\]
the former of these will give \(t = 0\), so that \(v_m = 0, m = 0, Y = 0\) and hence \(x = 0\), and the latter does not satisfy our requirement and there are no corresponding solutions \(x\).

Case 2. \(m \equiv 2 \pmod{4}\). By Lemma 2 \(u_m\) is then divisible by 3 and we have, by Lemma 1 again,
\[
\begin{align*}
u_m &= 3r^2, \\
u_{2m} &= s^2, \\
v_m &= t^2
\end{align*}
\]
for some positive integers \(r, s, t\) with \(2rst = Y\). We have, by (4) (with \(n = m\)), \(s^2 = 9r^4 + 2t^4\), which is obviously impossible, since g.c.d. \((t, 3) = 1\) by Lemma 1, and 2 is a (uniques) quadratic non-residue \(\pmod{3}\).

Case 3. \(m \equiv 1 \pmod{2}\). In this case \(u_{2m}\) is a multiple of 3 by Lemma 2, and we have, by Lemma 1,
\[
\begin{align*}
u_m &= r^2, \\
u_{2m} &= 3s^2, \\
v_m &= t^2
\end{align*}
\]
for some positive integers \(r, s, t\) with \(2rst = Y\). The relations (3) and (4) (with \(n = m\)) will yield the equations

\[r^4 - 2t^4 = -1 \quad \text{and} \quad 3s^2 = r^4 + 2t^4, \]

whence

\[3s^2 - 2r^4 = 1. \] (8)

By a theorem of Ljunggren [1, Satz 3] the equation (8) has at most one solution in positive integers \(r, s\); hence, \(r = s = 1\) is the unique positive solution of (8), giving \(t = 1\), \(u_m = v_m = 1\) and so \(m = 1\). Hence we have \(v_1 = v_t = 12\), \(x = 6Y^2 = 2v_t = 24\).

Solutions with \(x \equiv 1\) (mod 3). Write \(x = 3x_1 + 1\). Then we have

\[y^2 = (3x_1 + 1)(3x_1^2 + 2x_1 + 1), \]

where \(d = \text{g.c.d.}(3x_1 + 1, 3x_1^2 + 2x_1 + 1) = 1\) or 2.

If \(3x_1 + 1\) is odd, then \(d = 1\) and we have \(3x_1 + 1 = Y\), \(3x_1^2 + 2x_1 + 1 = X^2\) for some integers \(X, Y\) with \(\text{g.c.d.}(X, Y) = 1\), and elimination of \(x_1\) will yield the equation

\[3X^2 - Y^4 = 2. \] (9)

This equation has an obvious solution \(X = Y = 1\), and we find by applying a theorem of Ljunggren [3, Satz II] that \(X = Y = 1\) is the unique positive solution of (9), and this gives the solution \(x = Y^2 = 1\) of the equation (1).

If \(3x_1 + 1\) is even, then \(d = 2\) and we have \(3x_1 + 1 = 2Y^2\), \(3x_1^2 + 2x_1 + 1 = 2X^2\) for some integers \(X, Y\) with \(\text{g.c.d.}(X, Y) = 1\); but this is impossible since the congruence \(2Y^2 \equiv 1\) (mod 3) has no solutions in \(Y\).

Solutions with \(x \equiv 2\) (mod 3). Put \(x = 3x_1 - 1\). Then we have

\[y^2 = (3x_1 - 1)(3x_1^2 - 2x_1 + 1), \]

where \(\text{g.c.d.}(3x_1 - 1, 3x_1^2 - 2x_1 + 1) = 1\) or 2.

Since \(3x_1 - 1 = Y\) is impossible in integers \(x, Y\), we must have \(3x_1 - 1\) even, and so \(3x_1 - 1 = 2Y^2\), \(3x_1^2 - 2x_1 + 1 = 2X^2\) for some integers \(X, Y\) with \(\text{g.c.d.}(X, Y) = 1\), whence

\[3X^2 - 2Y^4 = 1. \] (10)

The equation (10), which is satisfied by \(X = Y = 1\), has at most one solution in positive integers \(X\) and \(Y\), again by Ljunggren’s [3, Satz II]. Hence, \(X = Y = 1\) is the unique positive solution of (10), and so \(x = 2Y^2 = 2\) is the only integer solution of the equation (1) with \(x \equiv 2\) (mod 3).

The proof of our theorem is now complete.

References

[3] ---: Ein Satz über die diophantische Gleichung \(Ax^2 - By^4 = C(C = 1, 2, 4)\). Tolfte Skandinaviska Matematikerskongressen i Lund (1953), pp. 188–194.