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We deal with the intermediate propositional logics. We suppose
familiarity with the intermediate logics. For those not mentioned
here explicitly, we refer to our Survey [1].

The so-called Peirce’s axiom P is abaa, where parentheses
are omitted by assuming the association from the left. This axiom
was modified by Nagata into a sequence of axioms as follows"

Definition 1. Pl(a0, al)=aa0ala,
P(ao, ..., a)=anDP_l(ao, ".,a_)DaDa.

This sequence is often used in the study of intermediate logics as
a strong and convenient tool. The evaluation of axioms from this
sequence is sometimes treated in literatures but the treatment seems
not to be complete.

Here we give a complete treatment of the evaluatioa and its
application for the axiomatization of infinite models.

As models for intermediate propositional logics, we take up the
so-called Kripke model, which was. modified and renamed as POS
model by Ono (see Ono [2]). Further, we treat only finite models.

Let M be a POS model (usually, with the minimum elemeat). We
define the condition C(W, a) for the M-valuation W and the element a

of M as follows"
Condition.

C(W, )" W(a,a)=f and, for any >, W(a, )=t.
And there exists >o such that W(b, fl)=f.

The main result of this note is the following

Theorem 2. W(P, a)=fif and only if there exists o> such that
C(W, 0).

We prove the theorem through the two lemmas as below.
Lemma 3. C(W, d0) implies W(P, do)=fi
Proof. By the hypothesis, we have W(a, )-t or any /3>0.

Further, there exists /30 such that W(b,/3)=fi Hence we hve
W(a b, 0) =fl So we have, for any ,_0, W(a b, ) f or W(a, )
=t. Hence we have W(aba, ao)-t. Finally, from W(aba, ao)
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--t and W(a, c0)-f, we have W(P, 0)--f.
Remark that the above proof does not use the finiteness of M.
Lemma 4. If W(P,)--f, then there exists o>_C such that

C(W, 0).
Proof. It is obvious that W(P,/)-t or any maximal e M.

Since W(P,c)--f, there exists non-maximal a0_>a such that W(P, ao)
--f and, for any a0, W(P, )-- t. From this, we have that W(ab

a, 0) t and W(a, o)- fi W(a b a, o) t implies that, for any

>Co, W(aba, /)--t. From this and W(P, fl)=t, we have W(a,
-t. Since W(a, ao)--t comes from W(aDb, ao)=t and W(aDba, ao)
=t, it must be that W(ab, Co)-=fi Hence there exists, fl>a0 such that
W(a, )=t and W(b, fl)--f. So the condition C(W, a0) is satisfied.

Corollary 5. W(Pn(ao, "’, an), c)=fif and only if there exists a
chain o>>" n-n>-- in M such that

(1) W(ao, ao)=f
(2) W(a, a) f and, for any fl a,, W(a,, fl)=t (i=1, 2, ..., n).
This corollary is a refinement o Lemma 3.4 in Ono [2].
Now we define two kinds o axioms.

Definition 6. A Z(a, b)VP,
B=Z(ao, b) VP,

where Z(a, b)=(ab)V(bDa) and Pn=P=(go, ",

Let = be the set of all the finite P0S models with the height n
and a= be the set of all the finite and irreducible P0S models with the
height n.

Our next objective is to prove

Theorem 7. (1) LJ+A= (SN),
Ne

(2) LJ+B,= (N

where N So means N itself.
Proof. As is easily seen, the axioms A, and B, can be rewritten

as I axioms. Hence the logics LJ+A, and LJ+B, have the finite
model property.

Validity. (1) Let M be a model
w and N e. Suppose that there exists an M-valuation W and an
element of M such that W(A, ,)=f. Since W(P, a)= f, we have
that e S by Corollary 5. Then, it must be that W(a, )=t for any
e N, which implies that W(Z(a, b), a)= t. Hence A is valid in M.

(2) Let M be a model of the form N $ S where 0k and
Ne n. We suppose that kl since the case k=0 is obvious. Suppose
that W(B,,)=f. Since W(Z(ao, b),,)=f, there exist ,2 such
that W(ao, )=t, W(ao, 0=f, W(b, )=fand W(b, z)=t. This implies
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that fl, fl, a e N. Since a e N e and W(Pn, a)= f, it must be that
W(ao, fl)=f or any fle N by Corollary 5. This is a contradiction.
Hence B is valid in M.

Completeness. (1) Let M be a finite and irreducible POS model
in which A is. valid. Since M is irreducible, M can be written as
S N with some k_ 1 and some N. Let/ be the possible biggest one.
If N gets to be empty, then M is linear and of the required form.
Suppose that N is. not empty. Then N has at least two minimal
elements. Suppose that N e. Then there exists an M-valuation
W such t’hat W(P,)=f with a minimal element . By this. M-
valuation, W(an, a)=fi Further, we can suppose that W(b,)=t and
that, or any a, W(a, fl)=t by Corollary 5. Let a’ be another
minimal element o N. Suppose that W(a, ’)=t and W(b, ’) =fi
This supposition does. not iterfere with W(P, ) fi Then we have
W(A, )=f for any e S. This contradicts with the assumption that
An is valid in M. Hence M is o the given orm.

(2) Let M be a finite and irreducible POS model in which B is
valid. M can be written as N S with some k_0 and some N. Let
k be the possible biggest one. If N gets to be empty, then M is o the
required form. Suppose that N e n. N has at least two maximal
elements. Tiere exists a chain a0a" a in N with a maximal

a0 and the minimum an. Let a’ be another maximal element of N.
Let W be an M-valuation such that

(1) W(ao, do) f, W(b, do) t,
(2) W(a,, ) f and, for any ,, W(a,, ) t (i 1, 2, ., n),
(3) W(ao, ’) t, W(b, ’)-- f.

Then, we have W(B, a)=f, which is contradictory. Hence M is of
the given form.

Corollary 8. LJ/A= (S N),
Ne

LJ+B.--LP ( (N " So,),

P +A ( N),
Ne

LP +B=LP (N ).
Ne
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