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On the Existence of Solutions or Linearized
Euler’s Equation

By Atsushi INOUE*) and Tetsuro /[IYAKAWA**)

(Communicated by K.Ssaku YOSIDA, M. d.A., Oct. 12, 1979)

1. Statement of results. Let/2 be a bounded domain in R with
smooth boundary 3/2 and , be the unit exterior normal to 3/2. We
denote by H the real Hilbert space consisting of all the real vector
fields u with coefficients in L(/2) s,ueh that div u--0 in/2 and u.,-0 on
3/2, and set V--H V/(H(/2)). Denoting by P the orthogonal projection
from (L(/2)) onto H, we consider the following initial value problem:

t. +P(a, grad)u=f,
(I.V.P.)

u(O) =Uo,
where f--f(t) and a--a(t) are given H-valued functions and u0 is an

element in H. (a, grad) denotes a(x, t)/x. Our aim in this note
j=l

is to establish the existence and uniqueness o the solution for (I.V.P.)
under certain mild assumptions on data. As a byproduct, we have
proved the essential self-adjointness o iP(a, grad) as an operator on
H when a does not depend on . When a--u, (I.V.P.) is the initial
value problem for Euler’s equation o incompressible ideal fluids.
However, we could not take a and u rom the same function space (see
Theorem 2 below). We note that nothing is known about the existence
of global weak solutions for Euler’s equation when n >3.

Our method of proof is based on the "vanishing viscosity" argu-
ment for the following problem"

(I.V.P.) -d+sNu+P(a, grad)u=f

u(O) =Uo,
where N denotes the Laplacian, --A, acting on l-forms with the
Neumann boundary condition: u.,-0, (du)o--O on 3t9 which is as-
sociated with the bilinear form: (du, dv)/(u,v), defined on
{ue (H(t)); u.,--O, on 3/2}, and 0 is a constant. Here we have
denoted by d the exterior differentiation and by / its ormal djoint.
(Throughout this paper, vector fields and 1-orms are identified by
means o Euclidean metric.) See [4] or [5] for the details o the
Neumann problem for differential orms. It is easy to see that N
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defines a non-negative self-adjoint operator on H. See also [2]. Now
our results are as ollows.

Theorem 1. Let T be a fixed positive number. Then, for each
0, uo V, f e L2(O, T V) and a e L(O, T H (Wl,(/2))n), (I.V.P.).
admits a unique solution uo such that

(i) us e C([0, T]; V)g L2(0, T; (H(.(2))n),
(ii) du/dt e L(O, T; H).
Theorem 2. Under the assumptions of Theorem 1, each sub-

sequence of {us} converges weak-star in L(O, T V) and strongly in
L2(O, T; H) to a unique solution u of (I.V.P.) such that

Ilu(t)llexp{C(a)t}(llUoll+ exp {-C(a)s}.l f(s)lds) for a.e.

te [0, T],
(b)

(c)

du/dt e L(O, T; H),

u(t)[= u0l+2 .[i (f(s), u(s))ds, for each t [0, T],

where C(a)0 is a constant depending on the norm of a as an element
in L(O, T; (Wl,(tP))n).

It should be noticed that the above theorems, remain valid i we
replace P(a, grad) by --P(a, grad), which amounts to solving (I.V.P.)
backwards in time. Thus, when a is independent o t, estimates (a)
and (b) with f=0 together with Stone’s theorem imply the essential
seli-adjointness of iP(a, grad) restricted to V. More specifically we
have obtained

Theorem :. For each a e H (WI,(D)), the linear operator
iP(a, grad) is essentially self-adjoint on D(N).

It seems to us that the above result has some relations with a con-
jecture o E. Nelson concerning the s.el-adjointness o the Liouville
operator (see [1] and [6]).

As is mentioned before, we do not know whether, in Theorem 2,
it is possible to take a and u rom L(0, T V) or not, even when n=3, 4.
In this connection we have obtained

Theorem 4. For each Uo e H, a e L(O, T H) and f e L2(O, T H),
there exists at least one function u in L(O, T H) satisfying (I.V.P.)
in the following sense" The identity--: (u(t), v)h’(t)dt--: (u(t), (a(t), grad)v)h(t)dt

(Uo, v)h(O) +.[i (f(t), v)h(t)dt,

is valid for each v e (C(9)) with div v=0, and each h e C([0, T]; R)
with h(T) O.

Finally, it is to be noticed that our results except Theorem 4 can
not be obtained if we use, instead of N, the Stokes operator,
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with the Dirichlet boundary condition.
2. Sketch of proof. First we prove Theorem 1 by the method

of Faedo-Galerkin. Let {w} be a total set of linearly independent

vectors in V, and choose u0, . gw such that Uo,Uo in V and
j=l

[lu0,[[<[[u0[[. We determine u(t)=, g(t)w by the equations"

( 1 ) (u’, w)+(du, dw)+ ((a, grad)u, w) (f, w), 1 ]< m,
u(O)=uo,.

If we multiply (1) by g(t) and add these equations or ], then, since
((a, grad)u, u) 0, we get

(d/dt) llu(t)l+2 Ildu(t)l[=2(f(t), u(t))
<(1/) [If(t)[1+ ][u(t) [[

Integrating this. or t we easily derive the boundedness of {u} in
L(0, T H) L(0, T V). Note that here we have used the coerciveness
o the Neumann problem (see [5]). Similarly, by multiplying (1)by
g(t) and adding or ], we can deduce the boundedness o {u:} in
L(O, T;H). Thus we may choose a subsequence o {u} converging
weak-star in L(0, T;H) and weakly in L(0, T; V) to an element
such that u: e L(0, T; H) and
( 2 ) (u:, v)+(du,, dr)/ ((a, grad)u,, v)=(f, v), a.e. in (0, T),
or each v e V. Since v-.(f-(a, grad)u.-u:, v) is continuous in L
topology and V is dense in H (see [2]), it ollows from the coerciveness
of the Neumann problem that u. e L(0, T; (H(9))), so that
u. e C([0, T]; V) by an interpolation theorem. The proo o the unique-
ness is standard, so omitted.

Next we prove Theorem 2. By virtue o the well-known orthogonal
decomposition theorem for (L(9)) (see [7, Chap. I]), there exists a
distribution p.(x, t) on/2 (0, T) such that
( 3 ) 3u./3t--eAu.+(a, grad)u.+grad p.=f, in 9 (0, T).
Applying exterior differentiation to (3) we have
( 4 ) (du) /3t A(du.) + (a, grad)du. df+R(a, D)u.,
where R(a, D) is a homogeneous first order differential operator whose
coefficients are linear combinations of 3a/3x. From his and the fact
tha du. satisfies the Neumann condition for 2-forms we obtain
( 5 ) (d/dr) dub(t)]] < C(a) u(t)]]+ df(t)
Since (d/dt) lug(t) ]<2 f(t) ,. [u.(t) H < f(t)]+ [lu.(t)II, it ollows
rom (5) that {u.} is bounded in L(0, T; V). This and the boundedness
of P(a, grad) rom V intoH imply that {u:} is. also bounded in L(0, T
(Note that N is a bounded operator rom V into V’.) Now we can
apply the compactness theorem of J. P. Aubin (see [7, Chap. III]) to
conclude that {u.} contains a subsequence converging weak-star in
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L’(O, T V) and strongly in L(0, T; H) to a solution u of (I.V.P.) such
that u’ e L(0, T; V’). Hence it ollows rom an interpolation theorem
that u belongs to C([0, T]; H), from which we can esily deduce (c).
The estimate (a) follows immediately from (5), and (b) is obvious.
The proof of the uniqueness is omitted. Theorem 4 is proved by ap-
proximating Uo e H, f(t) e L(O, T; H) and a(t) e L(O, T; H) by the
data satisfying the assumptions of Theorem 1, and using (c) of
Theorem 2. Finally, Theorem 3 is a direct consequence of the follow-
ing result, due to Faris-Lavine [3].

Theorem. Let A be a symmetric operator and SI be a self-
ad]oint operator on a Hilbert space X satisfying for u e D(S),

(ii) I(Au, Su)- (Su, Au)]<C 11S/u ,
with some positive constants C and C independent of u. Then A is
essentially self-ad]oint on any core of S.

In our case A =iP(a, grad) and S= 1+N. The validity of (i) and
(ii) is verified by a direct calculation using the definition and coercive-
ness of the Neumann problem. The symmetricity of iP(a, grad) ollows
easily by an integration by parts.
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