66. On the Existence of Solutions for Linearized Euler's Equation

By Atsushi Inoue*) and Tetsuro Miyakawa**)
(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1979)

1. Statement of results. Let Ω be a bounded domain in R^{n} with smooth boundary $\partial \Omega$ and ν be the unit exterior normal to $\partial \Omega$. We denote by H the real Hilbert space consisting of all the real vector fields u with coefficients in $L^{2}(\Omega)$ such that $\operatorname{div} u=0$ in Ω and $u \cdot \nu=0$ on $\partial \Omega$, and set $V=H \cap\left(H^{1}(\Omega)\right)^{n}$. Denoting by P the orthogonal projection from $\left(L^{2}(\Omega)\right)^{n}$ onto H, we consider the following initial value problem:

$$
\left\{\begin{align*}
\frac{d u}{d t}+P(a, \operatorname{grad}) u & =f \tag{I.V.P.}\\
u(0) & =u_{0}
\end{align*}\right.
$$

where $f=f(t)$ and $a=a(t)$ are given H-valued functions and u_{0} is an element in H. (a, grad) denotes $\sum_{j=1}^{n} a^{j}(x, t) \partial / \partial x_{j}$. Our aim in this note is to establish the existence and uniqueness of the solution for (I.V.P.) under certain mild assumptions on data. As a byproduct, we have proved the essential self-adjointness of $i P(\alpha$, grad) as an operator on H when a does not depend on t. When $a=u$, (I.V.P.) is the initial value problem for Euler's equation of incompressible ideal fluids. However, we could not take a and u from the same function space (see Theorem 2 below). We note that nothing is known about the existence of global weak solutions for Euler's equation when $n \geqslant 3$.

Our method of proof is based on the "vanishing viscosity" argument for the following problem:
(I.V.P.)

$$
\left\{\begin{aligned}
\frac{d u}{d t}+\varepsilon N u+P(a, \operatorname{grad}) u & =f \\
u(0) & =u_{0}
\end{aligned}\right.
$$

where N denotes the Laplacian, $-\Delta$, acting on 1 -forms with the Neumann boundary condition : $u \cdot \nu=0,(d u)_{\text {norm }}=0$ on $\partial \Omega$ which is associated with the bilinear form: $(d u, d v)+(\delta u, \delta v)$, defined on $\left\{u \in\left(H^{1}(\Omega)\right)^{n} ; u \cdot \nu=0\right.$, on $\left.\partial \Omega\right\}$, and $\varepsilon>0$ is a constant. Here we have denoted by d the exterior differentiation and by δ its formal adjoint. (Throughout this paper, vector fields and 1-forms are identified by means of Euclidean metric.) See [4] or [5] for the details of the Neumann problem for differential forms. It is easy to see that N

[^0]defines a non-negative self-adjoint operator on H. See also [2]. Now our results are as follows.

Theorem 1. Let T be a fixed positive number. Then, for each $\varepsilon>0, u_{0} \in V, f \in L^{2}(0, T ; V)$ and $a \in L^{\infty}\left(0, T ; H \cap\left(W^{1, \infty}(\Omega)\right)^{n}\right)$, (I.V.P.) admits a unique solution u_{s} such that
(i) $\quad u_{s} \in C([0, T] ; V) \cap L^{2}\left(0, T ;\left(H^{2}(\Omega)\right)^{n}\right)$,
(ii) $d u_{s} / d t \in L^{2}(0, T ; H)$.

Theorem 2. Under the assumptions of Theorem 1, each subsequence of $\left\{u_{s}\right\}$ converges weak-star in $L^{\infty}(0, T ; V)$ and strongly in $L^{2}(0, T ; H)$ to a unique solution u of (I.V.P.) such that
(a) $\|u(t)\|_{V}^{2} \leqslant \exp \{C(a) t\}\left(\left\|u_{0}\right\|_{V}^{2}+\int_{0}^{T} \exp \{-C(a) s\}\|f(s)\|_{V}^{2} d s\right)$ for a.e. $t \in[0, T]$,
(b) $d u / d t \in L^{2}(0, T ; H)$,
(c) $\|u(t)\|_{H}^{2}=\left\|u_{0}\right\|_{H}^{2}+2 \int_{0}^{T}(f(s), u(s)) d s$, for each $t \in[0, T]$,
where $C(\alpha)>0$ is a constant depending on the norm of a as an element in $L^{\infty}\left(0, T ;\left(W^{1, \infty}(\Omega)\right)^{n}\right)$.

It should be noticed that the above theorems remain valid if we replace $P(a$, grad $)$ by $-P(a$, grad $)$, which amounts to solving (I.V.P.) backwards in time. Thus, when a is independent of t, estimates (a) and (b) with $f=0$ together with Stone's theorem imply the essential self-adjointness of $i P(a$, grad $)$ restricted to V. More specifically we have obtained

Theorem 3. For each $a \in H \cap\left(W^{1, \infty}(\Omega)\right)^{n}$, the linear operator $i P(a$, grad) is essentially self-adjoint on $D(N)$.

It seems to us that the above result has some relations with a conjecture of E. Nelson concerning the self-adjointness of the Liouville operator (see [1] and [6]).

As is mentioned before, we do not know whether, in Theorem 2, it is possible to take α and u from $L^{\infty}(0, T ; V)$ or not, even when $n=3,4$. In this connection we have obtained

Theorem 4. For each $u_{0} \in H, a \in L^{\infty}(0, T ; H)$ and $f \in L^{2}(0, T ; H)$, there exists at least one function u in $L^{\infty}(0, T ; H)$ satisfying (I.V.P.) in the following sense: The identity

$$
\begin{aligned}
-\int_{0}^{T} & (u(t), v) h^{\prime}(t) d t-\int_{0}^{T}(u(t),(a(t), \operatorname{grad}) v) h(t) d t \\
& =\left(u_{0}, v\right) h(0)+\int_{0}^{T}(f(t), v) h(t) d t,
\end{aligned}
$$

is valid for each $v \in\left(C_{0}^{\infty}(\Omega)\right)^{n}$ with $\operatorname{div} v=0$, and each $h \in C^{1}([0, T] ; R)$ with $h(T)=0$.

Finally, it is to be noticed that our results except Theorem 4 can not be obtained if we use, instead of N, the Stokes operator, $-P \Delta$,
with the Dirichlet boundary condition.
2. Sketch of proof. First we prove Theorem 1 by the method of Faedo-Galerkin. Let $\left\{w_{j}\right\}$ be a total set of linearly independent vectors in V, and choose $u_{0, m}=\sum_{j=1}^{m} g_{j m}^{0} w_{j}$ such that $u_{0, m} \rightarrow u_{0}$ in V and $\left\|u_{0, m}\right\|_{V} \leqslant\left\|u_{0}\right\|_{V}$. We determine $u_{m}(t)=\sum_{j=1}^{m} g_{j m}(t) w_{j}$ by the equations:

$$
\begin{align*}
& \left(u_{m}^{\prime}, w_{j}\right)+\varepsilon\left(d u_{m}, d w_{j}\right)+\left((a, \operatorname{grad}) u_{m}, w_{j}\right)=\left(f, w_{j}\right), \quad 1 \leqslant j \leqslant m \tag{1}\\
& u_{m}(0)=u_{0, m} .
\end{align*}
$$

If we multiply (1) by $g_{j m}(t)$ and add these equations for j, then, since $\left((a, \operatorname{grad}) u_{m}, u_{m}\right)=0$, we get

$$
\begin{aligned}
& (d / d t)\left\|u_{m}(t)\right\|_{H}^{2}+2 \varepsilon\left\|d u_{m}(t)\right\|_{L^{2}}^{2}=2\left(f(t), u_{m}(t)\right) \\
& \quad \leqslant(1 / \varepsilon)\|f(t)\|_{V}^{2}+\varepsilon\left\|u_{m}(t)\right\|_{V}^{2} \\
& \quad=(1 / \varepsilon)\|f(t)\|_{V}^{2}+\varepsilon\left(\left\|d u_{m}(t)\right\|_{L^{2}}^{2}+\left\|u_{m}(t)\right\|_{H}^{2}\right) .
\end{aligned}
$$

Integrating this for t we easily derive the boundedness of $\left\{u_{m}\right\}$ in $L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)$. Note that here we have used the coerciveness of the Neumann problem (see [5]). Similarly, by multiplying (1) by $g_{j m}^{\prime}(t)$ and adding for j, we can deduce the boundedness of $\left\{u_{m}^{\prime}\right\}$ in $L^{2}(0, T ; H)$. Thus we may choose a subsequence of $\left\{u_{m}\right\}$ converging weak-star in $L^{\infty}(0, T ; H)$ and weakly in $L^{2}(0, T ; V)$ to an element u_{s} such that $u_{s}^{\prime} \in L^{2}(0, T ; H)$ and
(2) $\left(u_{s}^{\prime}, v\right)+\varepsilon\left(d u_{s}, d v\right)+\left((a, \operatorname{grad}) u_{s}, v\right)=(f, v)$, a.e. in $(0, T)$,
for each $v \in V$. Since $v \rightarrow\left(f-(a\right.$, grad $\left.) u_{s}-u_{s}^{\prime}, v\right)$ is continuous in L^{2} topology and V is dense in H (see [2]), it follows from the coerciveness of the Neumann problem that $u_{s} \in L^{2}\left(0, T ;\left(H^{2}(\Omega)\right)^{n}\right)$, so that $u_{s} \in C([0, T] ; V)$ by an interpolation theorem. The proof of the uniqueness is standard, so omitted.

Next we prove Theorem 2. By virtue of the well-known orthogonal decomposition theorem for $\left(L^{2}(\Omega)\right)^{n}$ (see [7, Chap. I]), there exists a distribution $p_{s}(x, t)$ on $\Omega \times(0, T)$ such that
(3) $\quad \partial u_{s} / \partial t-\varepsilon \Delta u_{s}+(a, \operatorname{grad}) u_{s}+\operatorname{grad} p_{\varepsilon}=f, \operatorname{in} \Omega \times(0, T)$.

Applying exterior differentiation to (3) we have
(4) $\quad \partial\left(d u_{s}\right) / \partial t-\varepsilon \Delta\left(d u_{s}\right)+(a$, grad $) d u_{s}=d f+R(a, D) u_{s}$,
where $R(a, D)$ is a homogeneous first order differential operator whose coefficients are linear combinations of $\partial a^{j} / \partial x_{k}$. From this and the fact that $d u_{s}$ satisfies the Neumann condition for 2 -forms we obtain
(5)
$(d / d t)\left\|d u_{\epsilon}(t)\right\|_{L^{2}}^{2} \leqslant C(a)\left\|u_{\varepsilon}(t)\right\|_{V}^{2}+\|d f(t)\|_{L^{2}}^{2}$.
Since $(d / d t)\left\|u_{s}(t)\right\|_{H}^{2} \leqslant 2\|f(t)\|_{H} \cdot\left\|u_{s}(t)\right\|_{H} \leqslant\|f(t)\|_{H}^{2}+\left\|u_{s}(t)\right\|_{H}^{2}$, it follows from (5) that $\left\{u_{s}\right\}$ is bounded in $L^{\infty}(0, T ; V)$. This and the boundedness of $P(a, \mathrm{grad})$ from V into H imply that $\left\{u_{s}^{\prime}\right\}$ is also bounded in $L^{2}\left(0, T ; V^{\prime}\right)$. (Note that N is a bounded operator from V into V^{\prime}.) Now we can apply the compactness theorem of J. P. Aubin (see [7, Chap. III]) to conclude that $\left\{u_{s}\right\}$ contains a subsequence converging weak-star in
$L^{\infty}(0, T ; V)$ and strongly in $L^{2}(0, T ; H)$ to a solution u of (I.V.P.) such that $u^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)$. Hence it follows from an interpolation theorem that u belongs to $C([0, T] ; H)$, from which we can easily deduce (c). The estimate (a) follows immediately from (5), and (b) is obvious. The proof of the uniqueness is omitted. Theorem 4 is proved by approximating $u_{0} \in H, f(t) \in L^{2}(0, T ; H)$ and $a(t) \in L^{\infty}(0, T ; H)$ by the data satisfying the assumptions of Theorem 1, and using (c) of Theorem 2. Finally, Theorem 3 is a direct consequence of the following result, due to Faris-Lavine [3].

Theorem. Let A be a symmetric operator and $S \geqslant 1$ be a selfadjoint operator on a Hilbert space X satisfying for $u \in D(S)$,
(i) $\|A u\| \leqslant C_{1}\|S u\|$,
(ii) $|(A u, S u)-(S u, A u)| \leqslant C_{2}\left\|S^{1 / 2} u\right\|^{2}$, with some positive constants C_{1} and C_{2} independent of u. Then A is essentially self-adjoint on any core of S.

In our case $A=i P(a$, grad) and $S=1+N$. The validity of (i) and (ii) is verified by a direct calculation using the definition and coerciveness of the Neumann problem. The symmetricity of $i P(a$, grad) follows easily by an integration by parts.

References

[1] M. Aizenman: On vector fields as generators of flows. A counterexample to Nelson's conjecture. Ann. of Math., 107, 287-296 (1978).
[2] C. Bardos: Existence et unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. Appl., 40, 769-790 (1972).
[3] Faris, W. G., and R. B. Lavine: Commutators and self-adjointness of Hamiltonian operators. Comm. math. Phys., 35, 39-48 (1974).
[4] Folland, G. B., and J. J. Kohn: The Neumann problem for the CauchyRiemann complex. Ann. of Math. Studies, no. 75, Princeton University Press (1972).
[5] C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966).
[6] E. Nelson: Les écoulements incompressibles d'énergie finie. Colloques Internationaux de C.N.R.S., 117, 159-165 (1962).
[7] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam (1977).

[^0]: *) Department of Mathematics, Tokyo Institute of Technology.
 **) Department of Mathematics, Hiroshima University.

