66. On the Existence of Solutions for Linearized Euler's Equation

By Atsushi INOUE^{*)} and Tetsuro MIYAKAWA^{**)}

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1979)

1. Statement of results. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$ and ν be the unit exterior normal to $\partial\Omega$. We denote by H the real Hilbert space consisting of all the real vector fields u with coefficients in $L^2(\Omega)$ such that div u=0 in Ω and $u \cdot \nu = 0$ on $\partial\Omega$, and set $V = H \cap (H^1(\Omega))^n$. Denoting by P the orthogonal projection from $(L^2(\Omega))^n$ onto H, we consider the following initial value problem:

(I.V.P.)
$$\begin{cases} \frac{du}{dt} + P(a, \operatorname{grad})u = f, \\ u(0) = u \end{cases}$$

where f = f(t) and a = a(t) are given *H*-valued functions and u_0 is an element in *H*. (*a*, grad) denotes $\sum_{j=1}^{n} a^j(x, t)\partial/\partial x_j$. Our aim in this note is to establish the existence and uniqueness of the solution for (I.V.P.) under certain mild assumptions on data. As a byproduct, we have proved the essential self-adjointness of iP(a, grad) as an operator on *H* when *a* does not depend on *t*. When a=u, (I.V.P.) is the initial value problem for Euler's equation of incompressible ideal fluids. However, we could not take *a* and *u* from the same function space (see Theorem 2 below). We note that nothing is known about the existence of global weak solutions for Euler's equation when $n \ge 3$.

Our method of proof is based on the "vanishing viscosity" argument for the following problem:

(I.V.P.),
$$\begin{cases} \frac{du}{dt} + \varepsilon Nu + P(a, \operatorname{grad})u = f, \\ u(0) = u_{u} \end{cases}$$

where N denotes the Laplacian, $-\Delta$, acting on 1-forms with the Neumann boundary condition: $u \cdot \nu = 0$, $(du)_{\text{norm}} = 0$ on $\partial \Omega$ which is associated with the bilinear form: $(du, dv) + (\delta u, \delta v)$, defined on $\{u \in (H^1(\Omega))^n; u \cdot \nu = 0, \text{ on } \partial \Omega\}$, and $\varepsilon > 0$ is a constant. Here we have denoted by d the exterior differentiation and by δ its formal adjoint. (Throughout this paper, vector fields and 1-forms are identified by means of Euclidean metric.) See [4] or [5] for the details of the Neumann problem for differential forms. It is easy to see that N

^{*)} Department of Mathematics, Tokyo Institute of Technology.

^{**)} Department of Mathematics, Hiroshima University.

defines a non-negative self-adjoint operator on H. See also [2]. Now our results are as follows.

Theorem 1. Let T be a fixed positive number. Then, for each $\varepsilon > 0$, $u_0 \in V$, $f \in L^2(0, T; V)$ and $a \in L^{\infty}(0, T; H \cap (W^{1,\infty}(\Omega))^n)$, (I.V.P.), admits a unique solution u_{ε} such that

- (i) $u_{\varepsilon} \in C([0, T]; V) \cap L^{2}(0, T; (H^{2}(\Omega))^{n}),$
- (ii) $du_{\epsilon}/dt \in L^2(0, T; H).$

Theorem 2. Under the assumptions of Theorem 1, each subsequence of $\{u_{*}\}$ converges weak-star in $L^{\infty}(0, T; V)$ and strongly in $L^{2}(0, T; H)$ to a unique solution u of (I.V.P.) such that

(a) $\|u(t)\|_{\nu}^{2} \leq \exp \{C(a)t\} (\|u_{0}\|_{\nu}^{2} + \int_{0}^{T} \exp \{-C(a)s\} \|f(s)\|_{\nu}^{2} ds) \text{ for a.e.}$ $\in [0, T]$

$$t\in [0,T]$$
,

(b)
$$du/dt \in L^2(0, T; H)$$
,

(c) $\|u(t)\|_{H}^{2} = \|u_{0}\|_{H}^{2} + 2 \int_{0}^{T} (f(s), u(s)) ds$, for each $t \in [0, T]$,

where C(a) > 0 is a constant depending on the norm of a as an element in $L^{\infty}(0, T; (W^{1,\infty}(\Omega))^n)$.

It should be noticed that the above theorems remain valid if we replace P(a, grad) by -P(a, grad), which amounts to solving (I.V.P.) backwards in time. Thus, when a is independent of t, estimates (a) and (b) with f=0 together with Stone's theorem imply the essential self-adjointness of iP(a, grad) restricted to V. More specifically we have obtained

Theorem 3. For each $a \in H \cap (W^{1,\infty}(\Omega))^n$, the linear operator iP(a, grad) is essentially self-adjoint on D(N).

It seems to us that the above result has some relations with a conjecture of E. Nelson concerning the self-adjointness of the Liouville operator (see [1] and [6]).

As is mentioned before, we do not know whether, in Theorem 2, it is possible to take a and u from $L^{\infty}(0, T; V)$ or not, even when n=3, 4. In this connection we have obtained

Theorem 4. For each $u_0 \in H$, $a \in L^{\infty}(0, T; H)$ and $f \in L^2(0, T; H)$, there exists at least one function u in $L^{\infty}(0, T; H)$ satisfying (I.V.P.) in the following sense: The identity

$$-\int_{0}^{T} (u(t), v)h'(t)dt - \int_{0}^{T} (u(t), (a(t), \operatorname{grad})v)h(t)dt$$
$$= (u_{0}, v)h(0) + \int_{0}^{T} (f(t), v)h(t)dt,$$

is valid for each $v \in (C_0^{\infty}(\Omega))^n$ with div v=0, and each $h \in C^1([0, T]; R)$ with h(T)=0.

Finally, it is to be noticed that our results except Theorem 4 can not be obtained if we use, instead of N, the Stokes operator, -PA,

No. 8]

with the Dirichlet boundary condition.

2. Sketch of proof. First we prove Theorem 1 by the method of Faedo-Galerkin. Let $\{w_j\}$ be a total set of linearly independent vectors in V, and choose $u_{0,m} = \sum_{j=1}^{m} g_{jm}^0 w_j$ such that $u_{0,m} \rightarrow u_0$ in V and $\|u_{0,m}\|_V \leq \|u_0\|_V$. We determine $u_m(t) = \sum_{j=1}^{m} g_{jm}(t)w_j$ by the equations: (1) $(u'_m, w_j) + \varepsilon(du_m, dw_j) + ((a, \operatorname{grad})u_m, w_j) = (f, w_j), \quad 1 \leq j \leq m,$ $u_m(0) = u_{0,m}.$

If we multiply (1) by $g_{jm}(t)$ and add these equations for j, then, since $((a, \operatorname{grad})u_m, u_m) = 0$, we get

$$egin{aligned} (d/dt) \|u_m(t)\|_H^2 + 2arepsilon \|du_m(t)\|_{L^2}^2 &= 2(f(t), u_m(t)) \ &\leqslant (1/arepsilon) \|f(t)\|_V^2 + arepsilon \|u_m(t)\|_V^2 \ &= (1/arepsilon) \|f(t)\|_V^2 + arepsilon (\|du_m(t)\|_{L^2}^2 + \|u_m(t)\|_H^2). \end{aligned}$$

Integrating this for t we easily derive the boundedness of $\{u_m\}$ in $L^{\infty}(0, T; H) \cap L^2(0, T; V)$. Note that here we have used the coerciveness of the Neumann problem (see [5]). Similarly, by multiplying (1) by $g'_{jm}(t)$ and adding for j, we can deduce the boundedness of $\{u'_m\}$ in $L^2(0, T; H)$. Thus we may choose a subsequence of $\{u_m\}$ converging weak-star in $L^{\infty}(0, T; H)$ and weakly in $L^2(0, T; V)$ to an element u_* such that $u'_* \in L^2(0, T; H)$ and

(2) $(u'_{\epsilon}, v) + \epsilon(du_{\epsilon}, dv) + ((a, \operatorname{grad})u_{\epsilon}, v) = (f, v), \text{ a.e. in } (0, T),$

for each $v \in V$. Since $v \to (f - (a, \operatorname{grad})u_* - u'_*, v)$ is continuous in L^2 topology and V is dense in H (see [2]), it follows from the coerciveness of the Neumann problem that $u_* \in L^2(0, T; (H^2(\Omega))^n)$, so that $u_* \in C([0, T]; V)$ by an interpolation theorem. The proof of the uniqueness is standard, so omitted.

Next we prove Theorem 2. By virtue of the well-known orthogonal decomposition theorem for $(L^2(\Omega))^n$ (see [7, Chap. I]), there exists a distribution $p_*(x, t)$ on $\Omega \times (0, T)$ such that

(3) $\partial u_{\epsilon}/\partial t - \varepsilon \Delta u_{\epsilon} + (a, \operatorname{grad})u_{\epsilon} + \operatorname{grad} p_{\epsilon} = f$, in $\Omega \times (0, T)$. Applying exterior differentiation to (3) we have

(4) $\partial (du_s)/\partial t - \varepsilon \Delta (du_s) + (a, \operatorname{grad}) du_s = df + R(a, D)u_s,$

where R(a, D) is a homogeneous first order differential operator whose coefficients are linear combinations of $\partial a^{j}/\partial x_{k}$. From this and the fact that du_{k} satisfies the Neumann condition for 2-forms we obtain

 $(5) (d/dt) \| du_{\epsilon}(t) \|_{L^{2}}^{2} \leqslant C(a) \| u_{\epsilon}(t) \|_{V}^{2} + \| df(t) \|_{L^{2}}^{2}.$

Since $(d/dt) ||u_{i}(t)||_{H}^{2} \leq 2 ||f(t)||_{H} \cdot ||u_{i}(t)||_{H} \leq ||f(t)||_{H}^{2} + ||u_{i}(t)||_{H}^{2}$, it follows from (5) that $\{u_{i}\}$ is bounded in $L^{\infty}(0, T; V)$. This and the boundedness of P(a, grad) from V into H imply that $\{u_{i}\}$ is also bounded in $L^{2}(0, T; V')$. (Note that N is a bounded operator from V into V'.) Now we can apply the compactness theorem of J. P. Aubin (see [7, Chap. III]) to conclude that $\{u_{i}\}$ contains a subsequence converging weak-star in $L^{\infty}(0, T; V)$ and strongly in $L^2(0, T; H)$ to a solution u of (I.V.P.) such that $u' \in L^2(0, T; V')$. Hence it follows from an interpolation theorem that u belongs to C([0, T]; H), from which we can easily deduce (c). The estimate (a) follows immediately from (5), and (b) is obvious. The proof of the uniqueness is omitted. Theorem 4 is proved by approximating $u_0 \in H$, $f(t) \in L^2(0, T; H)$ and $a(t) \in L^{\infty}(0, T; H)$ by the data satisfying the assumptions of Theorem 1, and using (c) of Theorem 2. Finally, Theorem 3 is a direct consequence of the following result, due to Faris-Lavine [3].

Theorem. Let A be a symmetric operator and $S \ge 1$ be a selfadjoint operator on a Hilbert space X satisfying for $u \in D(S)$,

(i) $||Au|| \leq C_1 ||Su||$,

(ii) $|(Au, Su) - (Su, Au)| \leq C_2 ||S^{1/2}u||^2$,

with some positive constants C_1 and C_2 independent of u. Then A is essentially self-adjoint on any core of S.

In our case A = iP(a, grad) and S = 1 + N. The validity of (i) and (ii) is verified by a direct calculation using the definition and coerciveness of the Neumann problem. The symmetricity of iP(a, grad) follows easily by an integration by parts.

References

- M. Aizenman: On vector fields as generators of flows. A counterexample to Nelson's conjecture. Ann. of Math., 107, 287-296 (1978).
- [2] C. Bardos: Existence et unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. Appl., 40, 769-790 (1972).
- [3] Faris, W. G., and R. B. Lavine: Commutators and self-adjointness of Hamiltonian operators. Comm. math. Phys., 35, 39-48 (1974).
- [4] Folland, G. B., and J. J. Kohn: The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, no. 75, Princeton University Press (1972).
- [5] C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966).
- [6] E. Nelson: Les écoulements incompressibles d'énergie finie. Colloques Internationaux de C.N.R.S., 117, 159-165 (1962).
- [7] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam (1977).