60. A Generalization of Cauchy-Riemann Equations on a Riemannian Symmetric Space and the H^p Space Theory

By Köichi SAKA

Department of Mathematics, Akita University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1979)

We consider a generalization of Cauchy-Riemann equations in a Riemannian symmetric space and we extend the theory of H^p spaces by using this generalization.

We list some examples of generalizations of Cauchy-Riemann equations.

(a) E. M. Stein and C. Weiss [5] have defined Cauchy-Riemann equations in the n-dimensional Euclidean space in the following setting:

(1)
$$\sum_{i=1}^{n} \partial u_i / \partial x_i = 0, \qquad \partial u_i / \partial x_j = \partial u_j / \partial x_i.$$

They obtained that each u_i is harmonic and that $|u|^p$ is subharmonic if $p \ge (n-2)/(n-1)$ where $|u| = (|u_1^2| + \cdots + |u_n|^2)^{1/2}$.

(b) C. Fefferman and E. M. Stein [3] directly generalized the system (1) in the n-dimensional Euclidean space.

(c) The system (1) was extended to a compact Lie group by R. R. Coifman and G. Weiss [2].

(d) Let M be a Riemannian manifold and let d be the exterior differential operator on M and δ the codifferential operator. Then the deRham-Hodge equations $d\omega = \delta \omega = 0$ can be considered as a generalization of Cauchy-Riemann equations.

(e) The "spinor" system given by the Dirac operator on a spin manifold is a generalization of Cauchy-Riemann equations (see M. F. Atiyah [1]).

In this paper an extension of all these examples in a Riemannian symmetric space will be given as follows:

(i) We consider a homogeneous vector bundle over a Riemannian symmetric space such that its fiber is a Clifford algebra.

(ii) Next we consider C^{∞} cross sections on such a homogeneous vector bundle in Lie algebra level (see Definition 1).

(iii) A generalization of Cauchy-Riemann equations is given by a certain differential operator d and its dual δ operating on such C^{∞} cross sections, that is,

(2) $d\omega = \delta \omega = 0$ (see Definition 2). The examples (a), (b), (c) and (d) will arise when the Clifford algebra is an exterior algebra. The example (e) will arise when the Clifford algebra is a "spinor" algebra.

In Theorems 1 and 2 we shall see that a solution ω of the system (2) is harmonic and $|\omega|^p$ is subharmonic if $p \ge (n-2)/(n-1)$ in a certain sense, and using these properties we can extend results of the H^p space theory (the Poisson representation theorem, F. and M. Riesz's theorem, etc.).

Let (\mathfrak{G}, σ) be an effective orthogonal symmetric Lie algebra where \mathfrak{G} is a Lie algebra over R and σ is an involutive automorphism of \mathfrak{G} . In this paper we assume that (\mathfrak{G}, σ) is of the noncompact type, of the compact type or of the Euclidean type. Let $\mathfrak{G}=\mathfrak{R}+\mathfrak{P}$ be the decomposition of \mathfrak{G} into the eigenspaces of σ for the eigenvalue +1 and -1, respectively. Let (G, K) be a Riemannian symmetric pair associated with (\mathfrak{G}, σ) . Let m and n denote the dimensions of \mathfrak{R} and \mathfrak{P} , respectively. To avoid triviality we assume that $n \geq 2$. We denote by B the Killing form of \mathfrak{G} . We choose once and for all an orthogonal basis $Z_1, \dots, Z_m, X_1, \dots, X_n$ of \mathfrak{G} with respect to the Killing form B such that $Z_j \in \mathfrak{R}, j=1, \dots, m$ and $X_i \in \mathfrak{P}, i=1, \dots, n$. Moreover, we suppose that

and

$$B(Z_j, Z_j) = -1, \qquad j = 1, \cdots, m$$

(i) if $B(X_i, X_i) > 0$, $i=1, \dots, n$ then $B(X_i, X_i) = 1$,

(ii) if $B(X_i, X_i) < 0$, $i=1, \dots, n$ then $B(X_i, X_i) = 1$,

(iii) if $B(X_i, X_i) = 0$, $i = 1, \dots, n$ then $\{X_i\}$ is orthonormal with respect to an inner product which is invariant under Ad(k) $(k \in K)$.

We may consider elements of \mathfrak{G} as left invariant differential operators on G. We denote by e_1, \dots, e_n a basis of the vector space \mathfrak{P} corresponding to X_1, X_2, \dots, X_n . We denote by $C_+(\mathfrak{P}), C_-(\mathfrak{P})$ and $C_0(\mathfrak{P})$ the Clifford algebras defined by symmetric bilinear forms $(e_i | e_j)_+$ $= \delta_{ij}, (e_i | e_j)_- = -\delta_{ij}$ and $(e_i | e_j)_0 = 0, i, j = 1, \dots, n$, respectively. We denote by $\tilde{C}_+(\mathfrak{P}), \tilde{C}_-(\mathfrak{P})$ and $\tilde{C}_0(\mathfrak{P})$ the complexifications of $C_+(\mathfrak{P}), C_-(\mathfrak{P})$ and $C_0(\mathfrak{P})$, respectively. $C(\mathfrak{P})$ denotes any one of $C_+(\mathfrak{P}), C_-(\mathfrak{P})$ and $C_0(\mathfrak{P})$, and $\tilde{C}(\mathfrak{P})$ denotes its cemplexifications. We denote by $C^{\infty}(G; C(\mathfrak{P}))$ and $C^{\infty}(G; \tilde{C}(\mathfrak{P}))$ the spaces of all C^{∞} functions on G with values in $C(\mathfrak{P})$ and $\tilde{C}(\mathfrak{P})$, respectively. Let $\{c_{ij}^{\ k}\}$ be a set of constants such that

$$ad(Z_k)X_j = \sum_{i=1}^n c_{ij}^k X_i, \qquad k = 1, \dots, m, \quad j = 1, \dots, n,$$

where *ad* is the adjoint representation of \mathfrak{G} . We define a linear mapping $\tau(Z): \tilde{C}(\mathfrak{P}) \rightarrow \tilde{C}(\mathfrak{P}), Z \in \mathfrak{R}$ as follows:

- (i) When $\tilde{C}(\mathfrak{P}) = \tilde{C}_{+}(\mathfrak{P})$, we set $\tau(Z_{k}) = left \ Clifford \ multiplication \ by$ $(1/4) \sum_{i,j} c_{ij}^{k} e_{i} e_{j}, \qquad k = 1, \dots, m.$
- (ii) When $\tilde{C}(\mathfrak{P}) = \tilde{C}_{-}(\mathfrak{P})$, we set $\tau(Z_k) = left \ Clifford \ multiplication \ by$

No. 7]

(iii) When
$$\tilde{C}(\mathfrak{P}) = \tilde{C}_0(\mathfrak{P})$$
, we set
 $\tau(Z_k) = \sum_{i,j} c_{ij}^{k} e_i \iota(e_j)$, $k = 1, \dots, m$.

A mapping $\iota(e_j): \tilde{C}(\mathfrak{P}) \to \tilde{C}(\mathfrak{P}), j=1, \dots, n$, is as follows: If $\xi \in \tilde{C}(\mathfrak{P})$ has a form $\xi = \xi_1 + e_j \xi_2$ where all terms of ξ_1 and ξ_2 do not contain e_j then we set $\iota(e_j)\xi = \xi_2$.

Definition 1. We put

$$C^{\infty}_{\tau}(G\,;\,\widetilde{C}(\mathfrak{P})) = \{\omega \in C^{\infty}(G\,;\,\widetilde{C}(\mathfrak{P})): Z\omega = \tau(-Z)\omega \text{ for all } Z \in \mathfrak{R}\}$$

$$C^{\scriptscriptstyle \infty}_{\scriptscriptstyle \tau}(G\,;\,C(\mathfrak{P})) \!=\! \{\omega \in C^{\scriptscriptstyle \infty}(G\,;\,C(\mathfrak{P})) \colon Z\omega \!=\! \tau(-Z)\omega \text{ for all } Z \in \mathfrak{R} \}.$$

We set

and

$$(\omega,\xi) = \int_{G} \langle \omega(g), \xi(g) \rangle dg$$

for suitable elements $\omega, \xi \in C^{\infty}(G; \tilde{C}(\mathfrak{P}))$, where the inner product \langle , \rangle is a natural inner product in $\tilde{C}(\mathfrak{P})$.

Definition 2. We define an operator

$$d: C^{\infty}_{\tau}(G; \widetilde{C}(\mathfrak{P})) \rightarrow C^{\infty}_{\tau}(G; \widetilde{C}(\mathfrak{P}))$$

by

$$d\omega(g) = \sum_{i=1}^{n} e_i X_i \omega(g)$$

and an operator $\delta \colon C^{\infty}_{\tau}(G; \tilde{C}(\mathfrak{P})) \to C^{\infty}_{\tau}(G; \tilde{C}(\mathfrak{P}))$ to be the formally adjoint operator of d with respect to the inner product (,).

We now come to the definition of a generalization of Cauchy-Riemann equations. We define it by equations

(3) for $\omega \in C^{\infty}_{\tau}(G; \tilde{C}(\mathfrak{P})).$ $d\omega = \delta \omega = 0$

Example 1. We put $G = R^n$, the *n*-dimensional Euclidean space and $K = \{0\}$. Then (G, K) is a Riemannian symmetric pair of the Euclidean type. The Clifford algebra $C_0(R^n)$ is the exterior algebra of R^n . For a 1-form $\omega \in C^{\infty}(R^n; C_0(R^n))$, the system (3) is the system (1) of Cauchy-Riemann equations in the sense of E. M. Stein and G. Weiss [5]. In general, for any form $\omega \in C^{\infty}(R^n; C_0(R^n))$, the system (3) is a generalization of Cauchy-Riemann equations in the sense of C. Fefferman and E. M. Stein [3].

Example 2. Let (G, K) be a Riemannian symmetric pair as before and let M = G/K be the Riemannian symmetric space. We denote by $\wedge^* T(M)$ the exterior algebra generated by the dual of the tangent bundle over M. The bundle $\wedge^* T(M)$ is a homogeneous vector bundle over M associated with the adjoint representation (Ad (k), $C_0(\mathfrak{P})$) of K. Then the space $\Gamma^{\infty}(\wedge^* T(M))$ of all C^{∞} cross sections of $\wedge^* T(M)$ is isomorphic to the space

 $C^{\infty}_{Ad}(G; C_{0}(\mathfrak{P})) = \{ \omega \in C^{\infty}(G; C_{0}(\mathfrak{P})) : \omega(gk) = Ad(k^{-1})\omega(g), \ k \in K, \ g \in G \}$

and this may be considered in Lie algebra level as the space

 $C^{\infty}_{ad}(G; C_{0}(\mathfrak{P})) = \{ \omega \in C^{\infty}(G; C_{0}(\mathfrak{P})) : Z\omega = ad(-Z)\omega, Z \in \mathfrak{R} \}.$

Hence a solution of equations (3) corresponds to a harmonic form in the sense of deRham-Hodge. If G is a semisimple compact connected Lie group and G^* is the subgroup $\{(x, x) : x \in G\}$ of the product group $G \times G$, then $(G \times G, G^*)$ is a Riemannian symmetric pair of the compact type and G can be regarded as the Riemannian symmetric space $G \times$ G/G^* . In this case, for a 1-form $\omega \in C^{\infty}_{Ad}(G \times G \times R_+; C_0(\mathfrak{F}))$, where R_+ is the positive half line, the system (3) corresponds to the system of R. R. Coifman and G. Weiss [2].

Example 3. Let V be a real vector space with even dimension n = 2l. Let Q_j be the transformation of the complexified Clifford algebra $\tilde{C}_{-}(V)$ given by right Clifford multiplication by $\sqrt{-1}e_{2j-1}e_{2j}$, $j=1, \cdots, l$. We define

$$S(V) = \{ \omega \in \tilde{C}_{-}(V) : Q_{j}\omega = -\omega, j = 1, \cdots, l \}.$$

We put $G=R^n$ (*n* even) and $K=\{0\}$. Then, for $\omega \in C^{\infty}(R^n; S(R^n)) \subset C^{\infty}(R^n; \tilde{C}_{-}(R^n))$, a solution of the system (3) is a harmonic spinor for the Dirac operator.

Let (G, K) be a Riemannian symmetric pair associated with an effective orthogonal symmetric Lie algebra (\mathfrak{G}, σ) of the noncompact type and let M be the Riemannian symmetric space G/K with even dimension n=2l. S(M) denotes a homogeneous vector bundle associated with a representation $(\widetilde{Ad}(k), S(\mathfrak{F}))$ of K where $\widetilde{Ad}(k)$ is a lifting of Ad(k) $(k \in K)$ to $Spin(\mathfrak{F})$. Then, for

 $\omega \in C^{\infty}_{Ad}(G; S(\mathfrak{P})) \subset C^{\infty}_{Ad}(G; \tilde{C}_{-}(\mathfrak{P})),$

a solution of the system (3) corresponds to a harmonic spinor for the Dirac operator on S(M).

Theorem 1 (Harmonicity). Suppose that ω is a solution of the system (3) in $C^{\infty}_{\tau}(G; \tilde{C}(\mathfrak{P}))$.

(i) When S is of the noncompact type, we have

$$\left(\sum_{j=1}^{n} X_{j}^{2} - 2 \sum_{k=1}^{m} Z_{k}^{2}\right) \omega = 0 \quad if \ \tilde{C}(\mathfrak{P}) = \tilde{C}_{+}(\mathfrak{P}) \text{ or } \tilde{C}_{-}(\mathfrak{P})$$

and

$$\left(\sum_{j=1}^{n} X_{j}^{2} - \sum_{k=1}^{m} Z_{k}^{2}\right) \omega = 0 \quad if \; \tilde{C}(\mathfrak{P}) = \tilde{C}_{0}(\mathfrak{P})$$

$$\left(\sum_{j=1}^{n} X_{j}^{2} + 2\sum_{k=1}^{m} Z_{k}^{2}\right) \omega = 0 \quad if \ \tilde{C}(\mathfrak{P}) = \tilde{C}_{+}(\mathfrak{P}) \ or \ \tilde{C}_{-}(\mathfrak{P})$$

and

$$\left(\sum_{j=1}^n X_j^2 + \sum_{k=1}^m Z_k^2\right)\omega = 0 \quad if \ \tilde{C}(\mathfrak{P}) = \tilde{C}_0(\mathfrak{P}).$$

(iii) When S is of the Euclidean type, we have

$$\left(\sum_{j=1}^n X_j^2\right)\omega=0.$$

Theorem 2 (Subharmonicity). Suppose that ω is a solution of the system (3) in $C^{\infty}_{\tau}(G; C(\mathfrak{P}))$ and $p \geq (n-2)/(n-1)$.

(i) When S is of the compact type we have

$$\left(\sum_{j=1}^{n} X_{j}^{2} + 2\sum_{k=1}^{m} Z_{k}^{2}\right) |\omega|^{p} \ge 0 \quad if \ C(\mathfrak{P}) = C_{+}(\mathfrak{P}) \ or \ C_{-}(\mathfrak{P})$$

and

No. 7]

$$\left(\sum_{j=1}^{n} X_{j}^{2} + \sum_{k=1}^{m} Z_{k}^{2}\right) |\omega|^{p} \ge 0 \quad if \ C(\mathfrak{P}) = C_{0}(\mathfrak{P}).$$

(ii) When \mathfrak{G} is of the noncompact type or of the Euclidean type we have

$$\left(\sum_{j=1}^n X_j^2\right) |\omega|^p \ge 0.$$

Next we will present an extension of H^p spaces. Let R be the real line and let R_+ be the positive half line. We put $G_+=G\times R_+$ and $\mathfrak{P}'=\mathfrak{P}+R$. We define H^p spaces (p>0) given by

$$H^{p} = \Big\{ \omega \in C^{\infty}_{\tau}(G_{+}; C(\mathfrak{P}')) : d\omega = \delta \omega = 0, \\ \|\omega\|_{H^{p}} = \sup_{t>0} \left(\int_{G} |\omega(x, t)|^{p} dx \right)^{1/p} < \infty \Big\}.$$

We can construct a Poisson semigroup $\{P_i\}_{t>0}$ defined on $L^p(G)$, $1 \leq p \leq \infty$, by the Laplacian $\sum_{j=1}^n X_j^2 + c \sum_{k=1}^m Z_k^2$ where

$$c = \begin{cases} 2 & \text{if } C(\mathfrak{F}') = \overline{C}_+(\mathfrak{F}') \text{ or } C_-(\mathfrak{F}') \\ 1 & \text{if } C(\mathfrak{F}') = C_0(\mathfrak{F}') \end{cases}$$

(see K. Saka [4]). The Poisson semigroup $\{P_t\}_{t>0}$ can be also defined on the space $L^p(G; C(\mathfrak{P}'))$ of all L^p -functions on G with values in $C(\mathfrak{P}')$.

A following theorem is an extension of the representation theorem and F. and M. Riesz's theorem. The theorem can be proved from Theorems 1 and 2 (see K. Saka [4]).

Theorem 3. Assume that $1 \leq p \leq \infty$.

(i) Suppose that \mathfrak{G} is of the compact type and $\omega \in H^p$. Then ω can be represented as a Poisson integral $P_t f$ of a certain element f in $L^p(G; C(\mathfrak{F}))$.

(ii) Suppose that \mathfrak{G} is of the noncompact type or of the Euclidean type and $\omega \in H^p$ satisfies the relation

(4) $\omega(gk, t) = \omega(g, t)$ for $k \in K$, $t \in R_+$ and $g \in G$.

Then ω can be represented as a Poisson integral $P_i f$ of a certain element f in $L^p(G; C(\mathfrak{F}))$.

A following characterization theorem can be derived from Theorem 2 (see K. Saka [4]).

Theorem 4. Assume that $(n-1)/n and that <math>\omega$ is a solution of the system (3) in $C^{\infty}_{\tau}(G_{+}; C(\mathfrak{P}'))$.

(i) Either suppose that S is of the compact type, or

(ii) suppose that \circledast is of the noncompact type or of the Euclidean type and ω satisfies the relation (4). Then $\omega \in H^p$ if and only if

K. SAKA

$$\sup_{t>0}|\omega(g,t)|\!=\!\omega^{\scriptscriptstyle +}(g)\in L^p(G).$$

In this case, there are positive constants C and C' such that

 $\|\omega\|_{H^p} \leq C \|\omega^+\|_p \leq C' \|\omega\|_{H^p}.$

Details of these results will appear elsewhere.

References

- M. F. Atiyah: Classical groups and classical differential operators on manifolds. C.I.M.E. III, Differential Operators on Manifold, Coordinatore, E. Vesentini, pp. 5–48 (1975).
- [2] R. R. Coifman and G. Weiss: Invariant systems of conjugate harmonic functions associated with compact Lie group. Studia Math., 44, 301-308 (1972).
- [3] C. Fefferman and E. M. Stein: H^p spaces of several variables. Acta Math., 129, 137-193 (1972).
- [4] K. Saka: The representation theorem and the H^p space theory associated with semigroups on Lie groups. Tôhoku Math. J., 30, 131–151 (1978).
- [5] E. M. Stein and G. Weiss: On the theory of harmonic functions of several variables. I. Acta Math., 103, 25-62 (1960).