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We consider a generalization of Cauchy-Riemann equations, in a
Riemannian symmetric space and we extend the theory of H" spaces
by using this generalization.

We list some examples of generalizations o Cauchy-Riemann
equations,.

(a) E.M. Stein and C. Weiss [5] have defined Cauchy-Riemann
equations in the n-dimensional Euclidean space in the ollowing setting

( 1 ) u/x=O, u/x=u/x.
i=

They obtained that each u is harmonic and that lul" is subharmonic if
p>=(n--2)/(n--1) where lul=(lul+... +lul)/.

(b) C. Fefferman and E. M. Stein [3] directly generalized the
system (1) in the n-dimensional Euclidean space.

(c) The system (1) was. extended to a compact Lie group by R. R.
Coifman and G. Weiss [2].

(d) Let M be a Riemannian manifold and let d be the exterior
differential operator on M and 3 the codifferential operator. Then the
deRham-Hodge equations dw=3w=0 can be considered as a generali-
zation of Cauchy-Riemann equations..

(e) The "spinor" system given by the Dirac operator on a spin
manifold is a generalization of Cauchy-Riemann equations (see M. F.
Atiyah [1]).

In this paper an extension of all these examples in a Riemannian
symmetric space will be given as ollows

( ) We consider a homogeneous vector bundle over a Riemannian
symmetric space such that its fiber is a Clifford algebra.

(ii) Next we consider C cross sections on such a homogeneous
vector bundle in Lie algebra level (see Definition 1).

(iii) A generalization o Cauchy-Riemann equations is given by
a certain differential operator d and its dual operating on such C
cross sections, that is,
( 2 d o=0
(see Definition 2). The examples (a), (b), (c) and (d) will arise when the
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Clifford algebra is an exterior algebra. The example (e) will arise
when the Clifford algebra is a "spinor" algebra.

In Theorems 1 and 2 we shall see that a solution of the system
(2) is harmonic and I] is subharmonic if p>=(n-2)/(n-1) in a certain
sense, and using these properties, we can extend results of the H space
theory (the Poisson representation theorem, F. and M. Riesz’s theorem,
etc.).

Let ((R), a) be an effective orthogonal symmetric Lie algebra where
(R) is a Lie algebra over R and a is. an involutive automorphism of (R).

In this paper we assume that ((R), a) is. of the noncompact type, of the
compact type or of the Euclidean type. Let (R)--+$ be the decom-
position of (R) into the eigenspaces of a for the eigenvalue + 1 and -1,
respectively. Let (G, K) be a Riemannian symmetric pair associated
with ((R), a). Let m and n denote the dimensions of and $, respec-
tively. To avoid triviality we assume that n2. We denote by B the
Killing form of (R). We choose once and for all an orthogonal basis
Z,..., Z, X,..., X of (R) with respect to the Killing form B such
that Z e , ]--1, ..., m and X, e $, i--1, ..., n. Moreover, we suppose
that

and
B(Z,Z)----1,

( ) if B(X, X) O, i-- 1, ., n then B(X, X)-- 1,
(ii) if B(X, X) O, i= 1, ., n then B(X, X) 1,
(iii) if B(X,X)--O, i-1,...,n then (X) is orthonormal with

respect to an inner product which is invariant under Ad(k) (k e K).

We may consider elements of (R) as left invariant differential
operators on G. We denote by e, ..., en a basis of the vector space

corresponding to X,X,...,X. We denote by C/($), C_($) and
C0() the Clifford algebras defined by symmetric bilinear orms (e e)/
----, (e e)_-- -- and (e e)o--O, i, ]=1, ., n, respectively. We
denote by /($), _($) and 0($) the complexifications of C/($), C_($)
and C0(), respectively. C($) denotes any one of C/($), C_($) and
C0(.), and ($) denotes its cemplexifications. We denote by C(G C($))
and C(G ($.)) the spaces of all C functions on G with values in C($)
and ($), respectively. Let {c} be a set of constants such that

ad(Z)X-- , cX, k-- 1, ., m, ]-- 1, ., n,
i=l

where ad is the adjoint representation of (R). We define a linear map-
ping r(Z)" C($)-C($), Z e as ollows"

(i) When ()=+(), we set r(Z)--left Clifford multiplication by
(1/4) , cee, k-l,..., m.

(ii) When ()--

_
(), we set r(Z) left Clifford multiplication by
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--(1/4) , cee, k=l,.-., m.
i,j

(iii) When C(g)=C0(3), we set
r(Z)= ce(e), k= 1, ..., m.

A mapping (e)’C(3)-->C(3), ]=1,..., n, is as 2ollows" I e C()
has a 2orm =+e$ where all terms of and $ do not contain e
then we set (e)=.

Definition 1. We put
C:(G C())--( e C(G C()) Zw=(-Z)w or all Z e }

and
C:(G C())= {w e C(G; C())" Z=r(-Z)w 2or all Z e }.

We set

(, ) [ ((g), (g)}dg

or suitable elements w, e C(G C()), where the inner product (, }
is a natural inner product in C().

Definition 2. We define an operator
d. C (a;

by

dw(g) eXw(g)
i=1

and an operator " CT(G C())C:(G; C()) to be the formally adjoint
operator of d with respect to the inner product (,).

We now come to the definition of a generalization of Cauchy-
Riemann equations. We define it by equations.
( 3 ) d =0
for e C:(G; C()).

Example 1. We put G=R, the n-dimensional Euclidean space
and K={,0}. Then (G,K) is a Riemannian symmetric pair of the
Euclidean type. The Clifford algebra Co(R) is the exterior algebra
of R. For a l-form e C(R; Co(Rn)), the system (3) is the system
(1) of Cauchy-Riemann equations in the sense of E. M. Stein and G.
Weiss [5]. In general, for any form w e C(R;Co(R)), the system
(3) is a generalization of Cauchy-Riemann equations in the sense of C.
Fefferman and E. M. Stein [3].

Example 2. Let (G, K) be a Riemannian symmetric pair as before
and let M=G/K be the Riemannian symmetric space. We denote by

A* T(M) the exrior algebra generated by the dual of the tangent
bundle over M. The bundle A* T(M) is a homogeneous vector bundle
over M associated with the adjoint representation (Ad (k), C0()) of K.
Then the space F(A* T(M)) of all C cross sections, of A* T(M) is
isomorphic to the space
C2(G C0())={ e C(G C0())" (gk)=Ad(k-9(g), k e K, g e G}
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and this may be considered in Lie algebra level as the space
C(G C0())={w e C(G 60(3)) Zoo=ad(-Z)oo, Z e }.

Hence a solution of equations (3) corresponds to a harmonic form in
the sense of deRham-Hodge. If G is a semisimple compact connected
Lie group and G* is the subgroup {(x, x)" x e G} of the product group
G G, then (G G, G*) is a Riemannian symmetric pair of the compact
type and G can be regarded as the Riemannian symmetric space G
G/G*. In this case, for a 1-form e C(G G R+ C0()), where R+
is the positive hal line, the system (3) corresponds to the system of
R. R. Coifman and G. Weiss [2].

Example 3. Let V be a real vector space with even dimension n
21. Let Q be the transformation o the complexified Clifford algebra

_(V) given by right Clifford multiplication by /- le._e, ]=1, ...,
1. We define

S(V) {o e C_ (V) Qo= -oJ, ]= 1, ..., 1}.
We put G=R (n even) and K={0}. Then, for toe C(Rn; S(R))
C(R C_ (R)), a solution of the system (3) is a harmonic spinor for

the Dirac operator.
Let (G, K) be a Riemannian symmetric pair associated with an

effective orthogonal symmetric Lie algebra ((R), a) of the noncompact
type and let M be the Riemannian symmetric space G/K with even
dimension n--21. S(M) denotes a homogeneous vector bundle associated
with a representation (Ad(k), S()) of K where Ad(k) is a lifting of
Ad(k) (k e K) to Spin(). Then, for

e C(G; S())c C(G; C_()),
a solution of the system (3) corresponds to a harmonic spinor for the
Dirac operator on S(M).

Theorem 1 (Harmonicity). Suppose that oJ is a solution of the
system (3) in C(G C()).

( When (R) is of the noncompact type, we have

j=l

and

and

(ii)
x/- z: o o c()= Co().

When (R) is o the compact type, we have

X/+2 Z 0 if C() C+() or C_()
j=l

(iii)

, x/+ z: o f c() Co().
j--1

When (R) is o the Euclidean type, we hae

(= X) O.



No. 7] A Generalization of Cauchy-Riemann Equations 259

Theorem 2 (Subharmonicity). Suppose that o is a solution of the
system (3) in C:(G C(3)) and p= (n- 2) / (n- 1).

(i) When (R) is of the compact type we have, X/2 Z Iolo if C()=C+() or C_()

and

(ii)
we have

(, x/+ F, z/ I1,>o i c()=Co().
=1

When (R) is of the noncompact type or ,of the Euclidean type

Next we will present an extension of H spaces. Let R be the
real line and let R/ be the positive half line. We put G/--G R+ and

’=+R. We define H spaces (p 0) given by

H= e C(G+ C(’)) d==0,

w I,= sup Iw(x, t)l" dx <
t>0 G

We can construct a Poisson semigroup {Pt}>0 defined on L(G), lgp
g, by the Laplacian =X+c=Z where

+() or C_ (’)c= 2 ffC(’).-C
i c(’)= c0(’)

(see K. Saka [4]). The Poisson semigroup {Pt}>0 can be also defined
on the space L’(G; C(’)) of all L-functions on G with values in C(’).

A ollowing theorem is an extension of the representation theorem
and F. and M. Riesz’s theorem. The theorem can be proved from
Theorems 1 and 2 (see K. Saka [4]).

Theorem . Assume that lpg.
(i) Suppose that is of the compact type andwe H. Thenw

can be represented as a Poisson integral Ptf of a certain element f in
L(G C(’)).

(ii) Suppose that is of the noncompact type or of the Euclidean
type and w e H satisfies the relation
( 4 ) w(gk, t)=w(g, t) for k e K, t R+ and g e G.
Then w can be represented as a Poisson integral Ptf of a certain element
f in L(G;C(’)).

A following characterization theorem can be derived from Theorem
2 (see K. Saka [4]).

Theorem 4. Assume that (n- 1)/np and that is a solution
of the system (3) in C(G+ C(’)).

(i) Either suppose that is of the compact type, or
(ii) suppose that is of the noncompact type or of the

Euclidean type and w satisfies the relation (4). Then w e H if and only if
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sup I(g, t)[=w+(g) e LP(G).
t>0

In this case, there are positive constants C and C’ such that

Deails of these results will appear elsewhere.
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