57. Convergence of Approximate Solutions to Quasi-Linear Evolution Equations in Banach Spaces

By Nobuhiro Sanekata
Department of Mathematics, School of Education, Okayama University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

1. Introduction. In this paper we consider the Cauchy problem for the quasi-linear equation of evolution
(Q) $\quad d u(t) / d t+A(t, u(t)) u(t)=0, \quad$ a.e. $t \in[0, T], \quad u(0)=a$, under the following assumptions.
(X) X is a Banach space with norm $\|\cdot\|$. There is another Banach space Y, continuously and densely embedded in X. There is an isomorphism S of Y onto X. The norm $\|\cdot\|_{Y}$ in Y is chosen so that S becomes an isometry.
(I) For each $t \in\left[0, T_{0}\right]$ and $y \in W_{R},-A(t, y)$ is the infinitesimal generator of a $\left(C_{0}\right)$ semigroup $\{\exp [-s A(t, y)]\}_{s \geq 0}$ on X such that $\|\exp [-s A(t, y)]\| \leqq e^{\alpha s}$, where T_{0}, α and R are positive constants and $W_{R}=\left\{y \in Y:\|y\|_{Y} \leqq R\right\}$.
(II) For each $t \in\left[0, T_{0}\right]$ and $y \in W_{R}$, there is a bounded linear operator $B(t, y)$ on X into itself such that $S A(t, y) S^{-1}=A(t, y)+B(t, y)$, $\|B(t, y)\| \leqq \lambda$, where λ is a positive number independent of $t \in\left[0, T_{0}\right]$ and $y \in W_{R}$.
(III) For each $t \in\left[0, T_{0}\right]$ and $y \in W_{R}$, we have $D(A(t, y)) \supset Y$. The restriction of $A(t, y)$ to Y (which is a bounded linear operator on Y into X by the closed graph theorem) satisfies the following:

$$
\|A(t, y)-A(t, z)\|_{Y, X} \leqq \mu\|y-z\|, \quad t \in\left[0, T_{0}\right], y, z \in W_{R}
$$

where μ is a positive constant and $\|\cdot\|_{Y, X}$ is the operator norm in the Banach space of all bounded linear operators on Y into X.
(IV) For each $y \in W_{R}$ and $x \in Y, t \rightarrow A(t, y) x$ is continuous in X.

Assumptions (I) and (II) imply that $\exp [-s A(t, y)](Y) \subset Y$ and the restriction of $\exp [-s A(t, y)]$ to Y is a $\left(C_{0}\right)$ semigroup on Y such that $\|\exp [-s A(t, y)]\|_{Y} \leqq e^{r s}$, where γ is a positive constant. See [1]. Assumption (IV) is somewhat weaker than the corresponding assumption of [1]. It is assumed in [1] that $t \rightarrow A(t, y)$ is continuous in $\|\cdot\|_{Y, X^{-}}$ norm.

Using the perturbation theory for the linear equation of evolution, Kato [1] studied in detail the Cauchy problem for the quasi-linear equation of evolution. The purpose of this note is to show another approach to (Q). In §2, we construct approximate solutions to (Q)
for some $T \in\left(0, T_{0}\right)$, and then we show the convergence of them. In $\S 3$, we prove that the limit function obtained in $\S 2$ is a unique solution to (Q) if X is reflexive.
2. Construction and convergence of approximate solutions. Let $r \in(0, R)$ and let $a \in W_{r}$. We choose a positive number T such that $T<\min \left\{T_{0}, \beta^{-1} \log R / r\right\}$, where $\beta=\max \{\alpha, \gamma\}$. Let $P=\left\{t_{k}\right\}$ be a strictly increasing sequence in [0,T]. We define $\left\{x_{k}\right\}$ as follows:

$$
x_{0}=a, \quad x_{k+1}=\exp \left[-\left(t_{k+1}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}, \quad k=0,1, \cdots .
$$

Let $t_{\infty}=\lim _{k \rightarrow \infty} t_{k}$. For each $t \in\left[t_{0}, t_{\infty}\right)$ and $s \in\left[t_{0}, t\right]$, we define linear operator $U(t, s)$ as follows:

$$
U(t, s)=\exp \left[-\left(t-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] \cdots \exp \left[-\left(t_{j+1}-s\right) A\left(t_{j}, x_{j}\right)\right]
$$

if $t \in\left[t_{k}, t_{k_{+1}}\right]$ and $s \in\left[t_{j}, t_{j+1}\right]$. By the method used in [2], we obtain the following

Lemma 2.1. $\left\{x_{k}\right\}$ converges in Y-norm as $k \rightarrow \infty$.
Proof. Let $t_{k}>t_{j}>t_{i}>t_{0}$ and let $y \in Y$. Then we have

$$
\begin{aligned}
\left\|x_{k}-x_{j}\right\|_{Y}= & \left\|S x_{k}-S x_{j}\right\| \leqq\left\|S x_{k}-S U\left(t_{k}, t_{i}\right) S^{-1} y\right\| \\
& +\left\|S U\left(t_{k}, t_{i}\right) S^{-1} y-U\left(t_{k}, t_{i}\right) y\right\|+\left\|U\left(t_{k}, t_{i}\right) y-U\left(t_{j}, t_{i}\right) y\right\| \\
& +\left\|U\left(t_{j}, t_{i}\right) y-S U\left(t_{j}, t_{i}\right) S^{-1} y\right\|+\left\|S U\left(t_{j}, t_{i}\right) S^{-1} y-S x_{j}\right\| \\
= & I_{1}+I_{2}+I_{3}+I_{4}+I_{5} .
\end{aligned}
$$

Now, since $x_{k}=U\left(t_{k}, t_{i}\right) x_{i}$ and $x_{j}=U\left(t_{j}, t_{i}\right) x_{i}$, we have $I_{1}=\| U\left(t_{k}, t_{i}\right) x_{i}$ $-U\left(t_{k}, t_{i}\right) S^{-1} y\left\|_{Y} \leqq e^{\beta T}\right\| S x_{i}-y \|$ and $I_{5} \leqq e^{\beta T}\left\|S x_{i}-y\right\| . \quad I_{3}$ is bounded above by

$$
\begin{aligned}
\sum_{p=j}^{k-1} \| & U\left(t_{p+1}, t_{i}\right) y-U\left(t_{p}, t_{i}\right) y \| \\
& =\sum_{p=j}^{k-1}\left\|\left[\exp \left[-\left(t_{p+1}-t_{p}\right) A\left(t_{p}, x_{p}\right)\right]-1\right] U\left(t_{p}, t_{i}\right) y\right\| \\
& =\sum_{p=j}^{k-1}\left\|\int_{0}^{t_{p+1}-t_{p}} \exp \left[-r A\left(t_{p}, x_{p}\right)\right] A\left(t_{p}, x_{p}\right) U\left(t_{p}, t_{i}\right) y d r\right\|
\end{aligned}
$$

and since $\sup _{t, y}\|A(t, y)\|_{Y, X}<\infty$, we have $I_{3} \leqq C\left(t_{k}-t_{j}\right)\|y\|_{Y}$. Next, we put $A[r]=A\left(t_{p}, x_{p}\right)$ and $B[r]=B\left(t_{p}, x_{p}\right)$ if $r \in\left[t_{p}, t_{p+1}\right], p=0,1, \cdots$. Then we have

$$
\begin{aligned}
I_{2} & =\left\|\int_{t_{i}}^{t_{k}}(d / d r)\left[S U\left(t_{k}, r\right) S^{-1} U\left(r, t_{i}\right) y\right] d r\right\| \\
& \leqq \int_{t_{i}}^{t_{k}}\left\|S U\left(t_{k}, r\right)\left(A[r] S^{-1}-S^{-1} A[r]\right) U\left(r, t_{i}\right) y\right\| d r \\
& =\int_{t_{i}}^{t_{k}}\left\|S U\left(t_{k}, r\right) S^{-1} B[r] U\left(r, t_{i}\right) y\right\| d r \leqq C\left(t_{k}-t_{i}\right)\|y\|
\end{aligned}
$$

and in the same way, we have $I_{4} \leqq C\left(t_{j}-t_{i}\right)\|y\|$. Thus we have $\varlimsup_{j, k \rightarrow \infty}\left\|x_{k}-x_{j}\right\|_{Y} \leqq C\left\|S x_{i}-y\right\|+C\left(t_{\infty}-t_{i}\right)\|y\|$, for every i and $y \in Y$. This implies that $\varlimsup_{j, k \rightarrow \infty}\left\|x_{k}-x_{j}\right\|_{Y}=0$.
Q.E.D.

Lemma 2.2. For each $\varepsilon>0$ and $a \in W_{r}$, there is a partition $P(\varepsilon, a): 0=t_{0}<t_{1}<\cdots<t_{N_{0}}=T$, of $[0, T]$ such that
(i) $t_{k+1}-t_{k} \leqq \varepsilon, k=0,1, \cdots, N$,
(ii) $\left\|\left[A\left(t, x_{k}\right)-A\left(t_{k}, x_{k}\right)\right] \exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}\right\| \leqq \varepsilon$, for t, t^{\prime}

```
\(\in\left[t_{k}, t_{k+1}\right], k=0, \cdots, N_{s}\),
where \(x_{0}=a\) and \(x_{k+1}=\exp \left[-\left(t_{k+1}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}, k=0,1, \cdots, N_{s}\).
```

Proof. Inductively, we define $\left\{t_{k}\right\}$ and $\left\{x_{k}\right\}$ in the following manner: Suppose that t_{j} and $x_{j}, j=0, \cdots, k$ are constructed. Then if $t_{k}<T$, let t_{k+1} be the largest number satisfying (i), (ii) and $t_{k+1} \leqq T$, and let $x_{k+1}=\exp \left[-\left(t_{k+1}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}$. Note that $t_{k+1}>t_{k}$. We shall prove that there is an N such that $t_{N}=T$. Assume, for the contrary, that $t_{k}<T$ for all $k=0,1, \cdots$. Let $t_{\infty}=\lim _{k \rightarrow \infty} t_{k}$ and let $w \in W_{R}$ be the limit point of $\left\{x_{k}\right\}$. Then, for every $t, t^{\prime} \in\left[t_{k}, t_{\infty}\right]$, we have

$$
\begin{aligned}
M_{k} \equiv & \left\|\left[A\left(t, x_{k}\right)-A\left(t_{k}, x_{k}\right)\right] \exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}\right\| \\
\leqq & \left\|\left[A\left(t, x_{k}\right)-A(t, w)\right] \exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}\right\| \\
& +\left\|\left[A(t, w)-A\left(t_{k}, w\right)\right] \exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}\right\| \\
& +\left\|\left[A\left(t_{k}, w\right)-A\left(t_{k}, x_{k}\right)\right] \exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}\right\| \\
\leqq & 2 \mu R\left\|x_{k}-w\right\|+\left\|\left[A(t, w)-A\left(t_{k}, w\right)\right] \exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}\right\|,
\end{aligned}
$$

and since $\lim _{k \rightarrow \infty}\left\|\exp \left[-\left(t^{\prime}-t_{k}\right) A\left(t_{k}, x_{k}\right)\right] x_{k}-w\right\|_{Y}=0$, we have $\lim _{k \rightarrow \infty} M_{k}$ $=0$. Therefore, for every $\varepsilon>0$, there is a k such that $t_{\infty}-t_{k}<\varepsilon$ and $M_{k}<\varepsilon$. On the other hand, since t_{k+1} is the largest number satisfying (i) and (ii), we have $t_{k+1}>t_{\infty}$. This contradicts $t_{k+1} \leqq t_{\infty}$. Q.E.D.

Let $\varepsilon=1 / n$ and $a \in W_{r}$, and let $P(1 / n, a): 0=t_{0}^{n}<t_{1}^{n}<\cdots<t_{N_{n}}^{n}=T$ be the partition of [0,T] constructed by Lemma 2.2. We put $x_{0}^{n}=a$, $x_{k+1}^{n}=\exp \left[-\left(t_{k+1}^{n}-t_{k}^{n}\right) A\left(t_{k}^{n}, x_{k}^{n}\right)\right] x_{k}^{n}$ and $u_{n}(t)=\exp \left[-\left(t-t_{k}^{n}\right) A\left(t_{k}^{n}, x_{k}^{n}\right)\right] x_{k}^{n}$ if $t \in\left[t_{k}^{n}, t_{k+1}^{n}\right], k=0,1, \cdots, N_{n}$. Then we have

Proposition 2.3. $\left\{u_{n}(t)\right\}$ converges in X as $n \rightarrow \infty$, uniformly in $t \in[0, T]$.

Proof. Let $t \in\left(t_{k}^{n}, t_{k+1}^{n}\right) \cap\left(t_{j}^{m}, t_{j+1}^{m}\right)$. Suppose that $t_{k}^{n} \geqq t_{j}^{m}$. Then we have

$$
\begin{aligned}
(d / d t) & \left\|u_{n}(t)-u_{m}(t)\right\|^{2} \\
= & -2\left(A\left(t_{k}^{n}, x_{k}^{n}\right)\left(u_{n}(t)-u_{m}(t)\right), f\right)-2\left(\left(A\left(t_{k}^{n}, x_{k}^{n}\right)-A\left(t_{k}^{n}, x_{j}^{m}\right)\right) u_{m}(t), f\right) \\
& -2\left(\left(A\left(t_{k}^{n}, x_{j}^{m}\right)-A\left(t_{j}^{m}, x_{j}^{m}\right)\right) u_{m}(t), f\right) \\
\leqq & 2 \beta\left\|u_{n}(t)-u_{m}(t)\right\|^{2}+2 \mu R\left\|x_{k}^{n}-x_{j}^{m}\right\|\left\|u_{n}(t)-u_{m}(t)\right\| \\
& +(2 / m)\left\|u_{n}(t)-u_{m}(t)\right\|
\end{aligned}
$$

where $f \in F\left(u_{n}(t)-u_{m}(t)\right), F: X \rightarrow X^{*}$ is the duality mapping (multivalued). The second term of the right hand side of the above inequality is bounded above by

$$
\begin{aligned}
& 2 \mu R\left[\left\|x_{k}^{n}-u_{n}(t)\right\|+\left\|u_{n}(t)-u_{m}(t)\right\|+\left\|u_{m}(t)-x_{j}^{m}\right\|\right]\left\|u_{n}(t)-u_{m}(t)\right\| \\
& \leqq C(1 / n+1 / m)\left\|u_{n}(t)-u_{m}(t)\right\|+2 \mu R\left\|u_{n}(t)-u_{m}(t)\right\|^{2} .
\end{aligned}
$$

Therefore, we have $\left\|u_{n}(t)-u_{m}(t)\right\| \leqq C(1 / n+1 / m)$.
Q.E.D.
3. Existence of a local solution. In this section, we assume that X is reflexive. Then, since S is an isomorphism, Y is also reflexive. Therefore, W_{R} is closed in X. See [1, Lemma 7.3]. Now, we shall prove the following

Theorem 3.1. Let $u(t)$ be the limit function of $\left\{u_{n}(t)\right\}$ obtained
by Proposition 2.3. Then $u(t)$ is a unique solution to (Q) if X is reflexive.

Strictly speaking, an X-valued function $u(t)$ on [0,T] is called a solution to (Q) if $u(t)$ is strongly absolutely continuous, $u(t)$ is strongly differentiable at almost every $t \in[0, T], u(t) \in W_{R}$ for almost every $t \in[0, T]$ and $u(t)$ satisfies (Q).

Proof of Theorem 3.1. We first note that $u(t) \in W_{R}$, because $u_{n}(t) \in W_{R}$ and W_{R} is closed in X. Furthermore, since $(d / d t) u_{n}(t)$ $=-A\left(t_{k}^{n}, x_{k}^{n}\right) u_{n}(t), t \in\left[t_{k}^{n}, t_{k+1}^{n}\right]$ and $\sup _{t, y}\|A(t, y)\|_{Y, X}<\infty,\left\|(d / d t) u_{n}(t)\right\|$ is uniformly bounded in $t \in[0, T]$ and n. Therefore, $u(t)$ is Lipschitz continuous in $t \in[0, T]$ and $u(t)$ is strongly differentiable at almost every $t \in[0, T]$. The uniqueness of the solution can be proved as usual. Thus the following lemma leads to the conclusion of Theorem 3.1.

Lemma 3.2. If $u(t)$ is differentiable at $s \in(0, T]$, then $u^{\prime}(s)$ $=-A(s, u(s)) u(s)$.

Proof. For every $y \in Y$, we have

$$
\begin{aligned}
(d / d t)\left\|u_{n}(t)-y\right\|^{2} & =-2\left(A_{n}[t] u_{n}(t), f\right) \\
& \leqq 2 \beta\left\|u_{n}(t)-y\right\|^{2}+2\left\langle-A_{n}[t] y, u_{n}(t)-y\right\rangle_{s}
\end{aligned}
$$

where $f \in F\left(u_{n}(t)-y\right),\langle p, q\rangle_{s}=\sup \{(p, f): f \in F(q)\}, p, q \in X$ and $A_{n}[t]$ $=A\left(t_{k}^{n}, x_{k}^{n}\right)$ if $t \in\left[t_{k}^{n}, t_{k+1}^{n}\right)$. Integrating each side of this inequality from s to t and then passing to the limit as $n \rightarrow \infty$, we have

$$
\begin{aligned}
& \|u(t)-y\|^{2}-\|u(s)-y\|^{2} \\
& \quad \leqq 2 \beta \int_{s}^{t}\|u(r)-y\|^{2} d r+2 \int_{s}^{t}\langle-A(r, u(r)) y, u(r)-y\rangle_{s} d r .
\end{aligned}
$$

Therefore, since $(u(t)-u(s), f) \leqq(1 / 2)\left(\|u(t)-y\|^{2}-\|u(s)-y\|^{2}\right)$ for every $f \in F(u(s)-y)$, we have

$$
\left(u^{\prime}(s), g\right) \leqq \beta\|u(s)-y\|^{2}+(-A(s, u(s)) y, g),
$$

for some $g \in \boldsymbol{F}(u(s)-y)$. See [3, Lemma 1]. On the other hand, since $u(s-h)=u(s)-h u^{\prime}(s)+o(h)$ as $h \downarrow 0$ and since $A(s, u(s))+\beta$ is $m-$ accretive in Y, there is a $y_{h} \in Y$ such that $(1+h A(s, u(s))) y_{h}=u(s)$ $-h u^{\prime}(s)+o(h)$. Thus we have

$$
\begin{aligned}
& \left(h^{-1}\left(u(s)-y_{h}\right)-A(s, u(s)) y_{h}+o(1), g\right) \\
& \quad \leqq \beta\left\|u(s)-y_{h}\right\|^{2}+\left(-A(s, u(s)) y_{h}, g\right)
\end{aligned}
$$

for some $g \in F\left(u(s)-y_{h}\right)$. This implies that $\left\|u(s)-y_{h}\right\|=o(h)$ as $h \downarrow 0$. Thus we have $y_{h} \rightarrow u(s)$ and $A(s, u(s)) y_{h} \rightarrow-u^{\prime}(s)$ as $h \downarrow 0$, and since $A(s, u(s))$ is closed, we have $-u^{\prime}(s)=A(s, u(s)) u(s)$.
Q.E.D.

References

[1] T. Kato: Quasi-linear equations of evolution, with applications to partial differential equations. Lect. Notes in Math. vol. 448, Springer, pp. 25-70 (1974).
[2] K. Kobayasi: On a theorem for linear evolution equations of hyperbolic type (to appear).
[3] I. Miyadera: Some remarks on semigroups of nonlinear operators. Tôhoku Math. J., 23, 245-258 (1971).

