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1. We are concerned with the following problem which was
already considered by H. P. McKean [4] for the Brownian motion: in
what manner does the path of a diffusion on a manifold wind around
a fixed point or a hole asymptotically? For this purpose, we shall
define a stochastic version of the intersection number. As is well-
known, the usual intersection number can be represented by the inte-
gral of a differential double 1-form with singularity ([1]). Although
the path of the diffusion is not smooth, we can define its intersection
number with a chain by using the integral of the 1-form along the
path defined in [2] (see also [3]). We then study the asymptotic be-
haviors of such random intersection numbers to get some solutions of
the above mentioned problem.

2. Let M be a d-dimensional connected orientable Riemannian
manifold with a Riemannian metric g and 4 be the Laplace-Beltrami
operator corresponding to g. Let L=4/2+b, where b is a C* vector
field on M. Consider the minimal diffusion process X=(X,, P;) on M
corresponding to L. For any continuous mapping c: [0, {]-M, we
denote by ¢[0, t] the curve determined by ¢: ¢[0, t]={c(s); 0=s=t}. We
regard c[0, t] as a singular 1-chain ([5]).

To define the intersection number, we prepare some notations. We
principally use the notations of de Rham’s book ([1]). Let 9 be the
space of square integrable currents. Set 9,={T ¢ 9; T is homologous
to zero}, 9,={T € D; T is cohomologous to zero} and D,;={T e D; T is
harmonic}. Then 9=9,+9,+9D,. Let H,, H,, H; be the projections
on D, D,, D, respectively. For any l-current T which is continuous
in mean at infinity, we define H,T by (H,T, ¢)=(T,H;$), p € c-N9,
1=1,2,3. Then T can be decomposed uniquely as follows: T'=H,T
+H,T+H,T. Denote by h,(x,y) the kernel of H,, 1=1,2,3. Let e(x, %)
=#,h,(x, y) be the adjoint form of &, (as 1-form of ). Then eis C~
if z=y. It is known that e(x, ¥) can be written locally as follows. Let
4 be the Hodge-Kodaira’s Laplacian acting on 1-forms. We can choose
a domain U on which a fundamental solution y(z,¥y) for da=p exists.
Let o(x, ¥) be a C~ function supported in UX U with (i) 001, (ii)
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o(x, ¥y)=1on a neighborhood of the diagonal set and (iii) o(x, ¥) =0(y, ).
We set y,=0y. There exists a C~ double 1-form +(x, ¥) such that e(zx, ¥)
=d,0,%,7:(%, Y) + *, (2, ¥), x,y € U, where d is the exterior differential
operator and é is the adjoint of d. See [1] for the details.

Now we shall define the intersection number I(X[0, t], ¢) of the path
of X and a C~ singular (d—1)-chain ¢. In the following, we assume
%, ¢ c. For any positiveinteger N, we set oy =inf {¢; dist (X,,dc) <N}.
First we consider the case that the chain ¢ is contained in a subdomain
U,cU. Let f be a C~ function on M such that (i) 0<f<1 and (ii) f=1

on U,, f=0 outside U. Define j e(z,y) (yec) by

TEX[0,tA0 ]

(1) j (3, Y) =08y X pos W) — B3y 1)
xeX[(),t/\aN]

{f@)x (e, )+ A —f(x))e(x, ¥)

+(f (@) —Ddy0:%y71}, Pora.s.
In the above, the second term is well-defined as the integral of 1-form
along the path ([2]). The integral (1) is smooth in y € ¢ for almost all
o(P,). So the integral I j e(z,y) is well-defined. Define
yec J x€X[0,tAoy]
IN(X[O: t]’ C) by
IN(X[O, t], C)

=I f e(x, y)— I e(x,y), P,-a.s.
yec JzeX[0,t A0 y] xeX[D,tAaN] YEe
The second term of the right hand side is also well-defined as the inte-

gral of 1-form along the path ([2]), since I e(x,y) is a C* 1-form in
YyEc

JweX[O,tAoN]

x for x ¢dc ([11). In the general case, we can cover the chain ¢ by a
finite number of U’s on which a fundamental solution exists. By using
a partition of unity, we can define I,(XI[0,t], ¢) by the same way as
above. We can show that if z, ¢ ¢, then there exists a limit

I(X]0, t], ¢)=1im I ,(X][O0, ], ¢), P,-a.s.
N—oo

We call the limit I(X[O0, t], ¢) the intersection number of the path of
diffusion X and the (d—1)-chain c.

To clarify the relation between the intersection number defined
above and the usual intersection number I*(¢, ¢’), we state the following
approximation theorem. Let 4, be a subdivision of [0, c0): 0=s,,,<S,,
<...with|s, ;—8pz1/<n7' k=1,2, - .. (see[2]). LetX, bea polygonal
geodesic approximation of X obtained by joining X(s, ;_,) and X(s,,.).
Then it is easy to see that X,[0,t] can be regarded as a C~ singular
1-chain ([5]). Therefore I*(X,[0, t], ¢) is well-defined.

Theorem. If x & c, then there exists a subsequence {n,} such that

I*(X,,[0, t], 0—I1(X[0, t], ¢) a8 k—oo, P-a.s8.
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It follows from this theorem that I(X[O, t], ¢) has similar proper-
ties as the ordinary one:

Proposition. I(X[0, t], ¢) has the following properties for almost
oll w(P,).

(i) If xze¢ec,Uec, then IXI[O0, t], Aic,+ 4,¢,) =4I (XIO, t], ¢)
4+ I(XT[0, t1, ¢,), 4, 2, € R, where A,¢,+2,¢, is a linear combination of ¢,
and ¢, as (d—1)-chains.

(ii) If ¢ is a cycle, then I(XI0, t1, ¢) depends only on the homology
class of X[O0,t].

(ii) If X[0,t1Nc=¢, then I(XI[0, t], c)=0.

(iv) If ¢ is a (d—1)-chain with integral coefficients, then
I(XT0, t], ¢) is an integer.

3. Throughout this section we assume that M is compact. Since
M is compact, (i) there exists a unique invariant measure px of X with
p(M)=1 and (ii) the potential operator R of X is well-defined : Rf(x)

=j (E.f(X,)—F)dt, where f= j _F@udz) (6D. Let ¢, -+ ¢, be a

basis of (d—1)-dimensional homology group H,_,(M) of M. We con-
sider the asymptotic behavior of the path and each ¢;. We set «;

=I s, ), i=1, -- -, k. Then &, is a harmonic 1-form (i=1, - - -,
k). Set fi(x)=a,(b)(x). We define
1/2
ai=([, <t dBSs at dBS @) ",

where <, >(«) is the inner product of T#(M). Then we have the
following

Theorem. (i) For any i=1, ..., k, we have
lim L 1(Xo0, £], c¢)=I Fi@udr), Pas.
t=oo,teQ T o
G If fM FA@)p(dx)=0, we have
IX[0,8l,0) __ y IXI0,8he) _,  p o

t—o0,t€Q \/m o t—o0,t€Q «/m o
As an easy consequence of this theorem, we have
Corollary. Let M be a compact Riemannian surface with genus
h. Let (A;, B)i<i<n be a canonical homology basis. Denote by C; the
hole corresponding to (A;, By, i=1, ---,h. Let a; (or ) be the 1-form
corresponding to A, (or By). If j a;(D)(@)p(dx) >0 (or <0), then for
almost all w(P,), the path X[O0,t] 'Z(w)inds C, infinitely often only in the
positive (or negative) direction along B;. If j a(b)(@)u(dx)=0, then
for almost all w (P,), the path X[0, t] winds C, %Inﬁnitely often in both
directions along B;. The similar result holds for ;.
4, In this section, we assume that M=R?. Let (2!, 2% be the



26 S. MANABE [Vol. 55(A),

canonical coordinate of R.. We give R* the Riemannian metric g,,=
8155 ©,7=1,2. Let b=—x*b(r)(@/0x") +x'0(r)(@/3x"), r=((x")*+ (&))"
We consider the diffusion X corresponding to L as before. Let us con-
sider the intersection number I(XI[O0, t], ¢), where ¢=[0, cc). We define
this by I(X][O,t], ¢) =1lim,_. I(X[0,t], ¢,), where ¢,=1[0,n). Set

=.r r;2ds. Then the process B(t) defined by B(t)=log (r(v'(¥))/7,) is a
0
Brownian motion. Let L(f) be the local time at 0 of B. Then it is

easy to show that I(X[O, ¢], ¢) differs from _1 : ]dﬁ by only a
T XTo,¢t
bounded term, where 6=arg(x). We note that arg X(t)= dae

X[0,t]

(see [3]). We have the following
Theorem. Let 0. (i) If be L' ([0, c0),rdr), then
arg X(t) _ _ 1y, arg X@) _

im lim 22222 —co, P,-a.s.
i~ L(yr(E)) 1= L(y(2))
(ii) If b(r)=r~%, B2, then for any 0<6<1,
arg X(¢) =—o0, P,a.s.

lim =
i~ L(y(t))Hlog L(y(t))}~°
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