52. A Note on Almost-Primes in Short Intervals

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., June 12, 1979)

1. In this note we are concerned with the existence of P_{2} (numbers having at most two prime factors) in almost all short intervals. The hitherto best result in this field is due to Heath-Brown [1], who has shown, using the weighted linear sieve, that for almost all x there exists a P_{2} such that $x<P_{2} \leqq x+x^{1 / 11}$. Improving on this we shall prove, by an easy variant of Jutila's argument [2], the following result:

Theorem. Let ε be an arbitrary small positive constant. Then for almost all x there exists a P_{2} such that $x<P_{2} \leqq x+x^{\varepsilon}$.
Before giving the proof we make some remarks. One may consider the possibility of reducing the length of intervals from x^{6} to a power of $\log x$, which is desirable especially when Selberg's result [4] on primes in short intervals is taken into account. But the best result our argument can yield seems to be only $\exp \left(C(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right)$ with a large constant C, instead of x^{8} in our theorem. Also one may ask how the situation is if we consider the least P_{2} in almost all arithmetic progressions modulo a fixed integer. Because of the lack of a result on Dirichlet's L-functions comparable with Vinogradov's zero-free region for $\zeta(s)$ the Riemann zeta-function, our argument in the present note cannot be modified so as to be applicable to arithmetic progressions. Thus our result in [3] remains so far to be the best.
2. Now we enter into the proof. Let x be sufficiently large, and let us assume that $x>U, V>x^{1 / 3}$. And we put, denoting primes by p, p^{\prime},

$$
\begin{gathered}
P(s)=\sum_{U<p \leq 2 U} p^{-s}, \\
\Phi(y)=\sum_{\substack{y<p p^{\prime} \leq \frac{3}{U}(1+1 / V) \\
U<p \leq 2 U}} \log p^{\prime} .
\end{gathered}
$$

Further we put

$$
I_{x}=\frac{1}{x} \int_{x}^{2 x}\left|\Phi(y)-\frac{y}{V} P(1)\right|^{2} d y
$$

We have

$$
\Phi(y)-\frac{y}{V} P(1)
$$

$$
\begin{aligned}
= & \frac{1}{2 \pi i} \int_{\eta-i U}^{\eta+i U}\left\{G(s)-\frac{\zeta^{\prime}}{\zeta}(s)\right\} P(s)\left(\left(1+\frac{1}{V}\right)^{s}-1\right) y^{s} \frac{d s}{s} \\
& +O\left(\frac{x}{U}(\log x)^{3}\right) .
\end{aligned}
$$

In the above we have put

$$
\eta=1-(\log x)^{-3 / 4}, \quad G(s)=\sum_{p} \frac{\log p}{p^{s}\left(1-p^{s}\right)}
$$

and have appealed to the well-known estimate

$$
\frac{\zeta^{\prime}}{\zeta}(\sigma+i t) \ll \log |t|
$$

for

$$
\sigma \geqq 1-c(\log |t|)^{-2 / 3-s}, \quad|t| \geqq 2
$$

Thus we get, after performing the integration over y,

$$
I_{x} \ll \frac{x^{2 \eta}}{V^{2}}(\log x)^{2} \int_{-U}^{U} \int_{-U}^{U} \frac{|P(\eta+i u) P(\eta+i v)|}{1+|u-v|} d u d v+\left(\frac{x}{U}\right)^{2}(\log x)^{8} .
$$

The double integral is obviously

$$
\ll \int_{-U}^{U}|P(\eta+i u)|^{2} d u \int_{-U}^{U} \frac{d v}{1+|u-v|} \ll U^{2(1-\eta)} \log U
$$

So we find

$$
I_{x} \ll\left(\frac{x}{V} P(1)\right)^{2}\left\{(\log x)^{5}\left(\frac{U}{x}\right)^{2(1-\eta)}+\left(\frac{V}{U}\right)^{2}(\log x)^{8}\right\} .
$$

Setting in this

$$
V=x^{1-\varepsilon}, \quad U=V \exp \left((\log x)^{1 / 4}\right)
$$

we get

$$
I_{x} \ll\left(\frac{x}{V} P(1)\right)^{2} \exp \left(-(\log x)^{1 / 5}\right)
$$

This ends the proof.
Added in Proof (June 18, 1979). Combining quite ingeniously the zero-density argument with our method, D. Wolke (Univ. Freiburg) has succeeded in reducing the length of the intervals of our theorem to a power of $\log x$. See his forthcoming paper entitled "Fast-Primzahlen in kurzen Intervallen".

References

[1] D. R. Heath-Brown: Thesis. Cambridge Univ. (1977).
[2] M. Jutila: On numbers with a large prime factor. J. Indian Math. Soc., 37, 43-53 (1973).
[3] Y. Motohashi: On almost primes in arithmetic progressions. J. Math. Soc. Japan, 28, 363-383 (1976).
[4] A. Selberg: On the normal density of primes in small intervals and the difference between consecutive primes. Arch. Math. Naturvid., 47, 87-105 (1943).

