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§1. Introduction. Let X* be the dual of a Banach space X,
and denote the value of x*e X* at xe X by (x,2*). The duality
mapping F from X into X* is defined by F(z)={z*e X*: (z, 2%
=|z|f=|z*|} for e X. The norm of X is said to be Fréchet
differentiable if for each x in the unit sphere U of X lim,_, t7'(|x+ty||
—||z|) exists uniformly in y e U. It is known (e.g. see [3]) that the
norm of X is Fréchet differentiable if and only if F' is single-valued
and norm to norm continuous from X to X*. Let C be a subset of X.
A mapping T : C—C is said to be nonexpansive on C, or T € Cont (C)
if |Tz—Ty||<|jx—y| for all z,y e C. We denote by F, the set of all
fixed points of T, and by w,(x) the set of all weak subsequential limits
of {T*x}. Weset N={1,2, ...} and N,=N U{0}.

Throughout this note let X denote a uniformly convex real
Banach space, C a nonempty closed convex subset of X, and let xe C
and T e Cont (C). Our main result of this note is the following; and
the sketch of the proof is given in §2. The complete proof of our
result will be given in the subsequent paper.

Theorem. If the norm of X is Fréchet differentiable, then the
following four conditions are equivalent :

(@) T™x converges weakly as n—oo,

(b) Trx converges weakly as n—oo to a fixed point of T,

© Fr#0and o,(x)CF,,

(d) F,#0 and w-lim,_. (T"x—T""'z)=0.

Remark. This theorem contains the case that X and X* are uni-
formly convex. If X is a Hilbert space, this theorem is due to Pazy
[7], Bruck [2] and Schoneberg [8]. If X=L?(2), 1<p<oco, then the
theorem was announced by Baillon [1]. On the other hand, Miyadera
[5], [6] has recently given another extension of a result of [2] and [7],
that is our result holds under the condition that X is uniformly convex
and F' is weakly continuous at 0.

§2. Sketch of proof. Our theorem will follow from the follow-
ing two propositions.

Proposition 1. If the norm of X is Fréchet differentiable, we
have that (u—v, F(f—9))=0 for all u,veclcow,(x) and f, gelkF,,



210 K. KoBAYASI [Vol. 55(A),

where clco w,(x) denotes the closed convex hull of w,(x).

Proposition 2. Let {n,} be a sequence in N such that n,—co and
w-lim,_., T"x=y. If {T"x}is bounded and w-lim,.. (T"x—T"*'x)=0,
then y € F.

Now, to show the propositions we need the next lemma which
follows from the uniform convexity of X.

Lemma 1. Let p>1. Let u: and vz be elements of X defined
for ne N and ac A, where A is a nonempty set. Put a;=2"'(|uz|”
+vz|P) =2 us+vD)|?.  Suppose that {uz} and {v:} are bounded.

(i) If lim,.. a2=0 uniformly in «, then lim,.. |uz—vz||=0 uni-
formly in .

() If lim,..n'>7.,a:=0 uniformly in «, then lim,., n"!
X |ug—vz||P=0 uniformly in a.

Lemma 2. Let feF,. Then for each ke N, lim,_. |T™z,(n)
—2(n+m)||=0 uniformly in m e N, where z,(n)=2"*(T"x— f)+ f.

Sketch of Proof. Setuy,=T"z,(n)—z,_,(n+m)and vy, =—T"z,(n)
+f. From the nonexpansiveness of T it follows that {u7,} and {v;,}
are bounded. Since ur,—vr,=2(T"z,(n)—z,(n+m)), to prove the
lemma we may show that for each k lim,_.. |u",—v™",||=0 uniformly
in m. To this end, by virtue of Lemma 1 (i) it suffices to show that
for each k&

1, o, 278|260 P 07 [2) — |27 Ut - 07 [P =0
uniformly in m. But this will be proved by induction on k.

Lemma 3. Suppose that the norm of X is Fréchet differentiable.
Then lim,_.. (T"x— f, F(f —g)) exists for every f,g e Fy.

Proof. Let f,g9eF,;. Set b,,=2%(z,mn)—g|—||f—g|). Using
Lemma 2, we can obtain that lim,_., b, , exists for each k. Moreover
lim,_.. b, exists uniformly in n. Indeed, since | T"z— f|<|x— S| for
all n, the Fréchet differentiability of the norm of X implies that
lim,_... b, ,=lim,_, 2%(| f — g +2"*(T 2z — f)||— || f — 9| exists uniformly in
n. Therefore, lim,.., lim,_., b, , exists, and hence

lim,_.. (T"z— f, F(f —9)=|f—g| lim,_. lim,_., b,
exists.

Proof of Proposition 1. Let f,ge F,. Ifu,v e o,(®),thereexist
subsequences {n’} and {n"} of {n} such that T”’x?u and T""x—;)—w.

By Lemma 3 we have
w—f, F(f—g)=lim,_. (T 2—f, F(f—9))
=lim,.... T"z—f, F(f—9))
=@—-f,F(f—9),
and hence (u—v, F'(f —¢9))=0 for u, v € w,(x). But this is also true for
u, v € cleo w,(x), for the function p(w)=(u—1u, v*) is continuous and
affine on X for each %, ¢ X and v* ¢ X*.
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Next, to establish Proposition 2, we start with the following

notation: Let ke N. For ne N, and a=(n,n,, - --,n,) € Nt define
v, )=k >k, T g,
where s;=n,4+-n,+- - - +n,;, 1=1,2, - - -, k.

Lemma 4. Let p>1. Suppose that {T"x}is bounded : | T x| <M.
Then for each q € N lim,_...n™' > 728 | Tv(E, @) —v(E+1, &) |?=0 uniformly
n a e Nk, where k=24,

Sketch of Proof. Set k=2? and j=2?"'. For neN, and «

=®y Ny, - - -, Ny) € NE define u,=Tv(n, a) —v(n+1, &) and v,= — Tv(n, a)
+v(n+1,a”), where a’'=,ny, ---,n,) and o”’=0,+ - +Ny,1, Ny
<o, ny).  {u,} and {v,} are bounded, for {T™x} is bounded. Note that
U,— 0, =2(Tv(n, &) —v(n+1, a)), sincev(n, a)=2"(v#, a’) +v(n, «’)). We
can then show that for all » and all 2, x>0 with 2+x=1
(1) n 3 e S (T (TP —1)MP 427 Pt 3708 Qua).
Here af is defined in Lemma 1 and Q,(«a)=|Tv(, «)—v(@E+1,a)|?
+Tv@E, ) —vG+1,”)|P. If g=1, Q,(@)=0 because a’=n, and «”
=n,+mn,, and hence the left hand of (1) vanishes as n— oo uniformly
in e Nj. By Lemma 1 (ii) we obtain that lim,_, n~' > 728 ||us—v¢|]?
=0 uniformly in « € N3. This proves that the lemma is true for ¢=1.
Next, assume that the lemma is true for ¢g—1. Then, since &/, a”’ € N}
for «e Nk, the second term on the right of (1) vanishes as n—oo
uniformly in « € N* by the inductive hypothesis, and so the left hand
of (1) vanishes as n—oo uniformly in «. Hence by Lemma 1 (i)
again we see that our assertion is true for q. Thus the lemma will
be proved by induction on q.

Let X;,=X for ke N and let ¥,=1[?., X, and Y. =[], X, Y,
is a Banach space with the norm |||#|||,=max, o, ., [|[4*], w= @, ?, - - -, u"™)
for each neN. For u=@,u, ---,u" ---)eY, we set ||ulll
=8up,, |%| and ul,, =@, %, ---,u"). The next lemma is a slight
generalization of a result of Kakutani [4]; and its proof will be done
with a little change as in [3].

Lemma 5. LetueY.. Then for each n and each sequence {u,}
n Y, with u, [Yn—wmlyn i Y ,0nd sup,, {|||%,|||., ||| 4|} =M< oo, we can

extract a subsequence {m,} of {m} such that for all k&, j=1
|“k—1(umj+umj+1+ U +um1+k-—1) lYn”'u|YnHln§K(k)
where K(k) is a constant independent of n and § such that K(k)—0 as
k—oo.
Proof of Proposition 2. Set zi=T""%z. Consider the sequence
{w,} in Y, with u, =%}, 23, ---,2%, --+). Obviously, |||u]]l.<M since
|T*x||<M. From the assumption that T”kx7—>y and T"x—T”“x—;—)O

it follows that uklyn——w—mlm in Y, for each ne N, where u=(, vy, ---)
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€Y.. Hence by Lemma 5 there is a subsequence {m,} of {n,} such
that for ¢=0,1, .- -, n
BT g -+ Toer i) —y | < K (R,
or equivalently |v(, a,)—y|<K(k), where a,=(m, m,—m, ---, M,
—m,_,). Hence we have that | Ty —vy||<2K(k)+| Tv(, ar) —v(@E+1, o) ||
for i=0,1, ---,n—1. Summing with respect to 7 and dividing by =,
we obtain that
ITy—y | S2K () +n~ S04 | TG, ) —vG+1, @) .

Using Hoélder’s inequality, we see from Lemma 4 that the second term
on the right of the above inequality vanishes as n—oo if k=27 More-
over, since K(k)—0 as k— oo, it follows that Ty=y, and hence y ¢ F',.

Proof of Theorem. Note that {T"z} is bounded if and only if
F,+0. Obviously, (b) implies (a) and (a) implies (d). It is a direct
consequence of Proposition 2 that (d) implies (¢). Finally, to prove
that (c¢) implies (b) we may show that w,(x) is a singleton. To this
end let u, v € w,(x). Since w,(x)CF, by hypothesis, we have u, v e Fy,
and hence ||u—v|f=w—v, F(u—v))=0 by Proposition 1. This gives
that u=v, and so v,(z) is a singleton.

References

[1] J. B. Baillon: Comportment asymptotique des itérés de contraction non
linéaires dans les espaces L?. C.R. Acad. Sci. Paris, 286, 157-159 (1978).

[21 R. E.Bruck: On the almost-convergence of iterates of a nonexpansive map-
ping in Hilbert space and the structure of the weak o-limit set. Israel J.
Math., 29, 1-16 (1978).

[81 J. Diestel: Geometry of Banach spaces. Lect. Notes in Math., vol. 485,
Springer (1975).

[4] S. Kakutani: Weak convergence in uniformly convex Banach spaces. To-
hoku Math. J., 45, 188-193 (1938).

[6] I. Miyadera: Asymptotic behavior of iterates of nonexpansive mappings in
Banach spaces. Proc. Japan Acad., 54A, 212-215 (1978).

[6] Ditto. II. Ibid., 54A, 318-321 (1978).

[7]1 A.Pazy: On the asymptotic behavior of iterates of nonexpansive mappings
in Hilbert spaces. Israel J. Math., 26, 197-204 (1977).

[8] R. Schoneberg: Weak convergence of trajectories of nonexpansive semi-
groups in Hilbert space. Ibid., 30, 130-132 (1978).




