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1. Introduction. Let X* be the dual of a Banach space X,
and denote the value o x*eX* at xeX by (x,x*). The duality
mapping F 2rom X into X* is defined by F(x)= {x*e X*’(x, x*)
=llxll=llx*ll} or x eX. The norm o X is said to be Frdchet
di]erentiable i or each x in the unit sphere U of X lim0 t-(llx + tyll
--Ilxl) exists uniformly in y e U. It is known (e.g. see [3]) that the
norm of X is Frchet differentiable i and only i F is single-valued
and norm to norm continuous rom X to X*. Let C be a subset o X.
A mapping T" C-C is said to be nonexpansive on C, or T e Cont (C)
if Tx--TYlIIIx--Yl or all x, y e C. We denote by Fr the set of 11
fixed points o T, and by w(x) the set of all weak subsequential limits
of {T’x}. We set N=(1, 2, } and No=N J {0}.

Throughout this note let X denote a uniformly convex real
Banach space, C a nonempty closed convex subset o X, and let x e C
and T e Cont (C). Our main result of this note is the ollowing; and
the sketch o the proo is given in 2. The complete proo o our
result will be given in the subsequent paper.

Theorem. If the norm of X is Frgchet differentiable, then the
following four conditions are equivalent"

(a) Tnx converges weakly as n--oo,
(b) Tnx converges weakly as n--oo to a fixed point of T,
(c) Fr=/= and ww(x)Fr,
(d) Fr=O and w-lim (Tx--T/lx)=O.
Remark. This theorem contains the case that X and X* are uni-

formly convex. I2 X is a Hilbert space, this theorem is due to Pazy
[7], Bruck [2] and SchSneberg [8]. I X=L(/2), lpoo, then the
theorem was announced by Baillon [1]. On the other hand, Miyadera
[5], [6] has recently given another extension of a result o [2] and [7],
that is our result holds under the condition that X is uni2ormly convex
and F is weakly continuous at 0.

2. Sketch of proof. Our theorem will follow from the follow-
ing two propositions.

Proposition 1. If the norm of X is Frgchet differentiable, we
have that (u-v,F(f-g))=O for all u, veclcoow(x) and f, g eFt,
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where clco (x) denotes the closed convex hull of Ow(X).
Proposition 2. Let {n} be a sequence in N such that n-+c and

w-lim Tnx--y. If {TAX} i8 bounded and w-lim_ (Tnx--T+X)--O,
then y e Fr.

Now, to show the propositions we need the next lemma which
follows rom the uniform convexity of X.

Lemma 1. Let pl. Let u and v be elements of X defined
for n e N and e A, where A is a nonempty set. Put a=2-(u
+]]v]]O-[]2-(u+v)]]. Suppose that {u} and {v} are bounded.

(i) If lim_ a 0 uniformly in , then lim u-v 0 uni-

formly in .
(ii) If lim n-=a 0 uniformly in , then lim_ n-]]u-v;]=O uniformly in .
Lemma 2. Let f e Fr. Then for each k e N, lim [Tz(n)

--z(n+m)[[=O uniformly in me N, where z(n)=2-(Tx-f)+f
Sketch of Proof. Setu Tz(n)--z_(n+m) andv Tz(n)

U V+f. From the nonexpansiveness of T it ollows that { ,} and { ,}
are bounded. Since u.,--Vn, 2(Tz(n)--z(n+m)), to prove the
lemma we may show that or each k lim [lu,--Vn, 0 uniformly

in m. To this end, by virtue of Lemma 1 (i) it suffices to show that
for each k

, ) -li 2 (u,+v.,)II 0
uniformly in m. But this will be proved by induction on k.

Lemma . Suppose that the norm of X is Frchet dierentiable.
Then lim. (Tax f, F(f--g)) exists for every f, g e Fr.

Proo. Let f, g e Ft. Set b,=2(]lz(n)-g]]-]]f-g]]). Using
Lemma 2, we can obtain that lim b,. exists or each k. Moreover
lim b.. exists uniformly in n. Indeed, since [[Tx--f]]g]]x--f[] or
all n, the Frchet differentiability of the norm of X implies that

limb,=lim 2(f-g+2-(Tx-f) ]-[[f-g]]) exists uniformly in
n. Therefore, lim lim b, exists, and hence

lim (Tx f, F(f g)) f- g lim_ lim b,
exists.

Proof of Proposition 1. Let f, g e Ft. I u, v e (x), there exist
subsequences {n’} and {n} of {n} such that T’x )u and T"x )v.

By Lemma 3 we have
(u- f, F(f g)) lim,_ (T’x- f, F(f g))

lim.... (T"x- f, F(f-- g))
(v-- f, F(f-- g)),

and hence (u--v, F(f--g))=O for u, v e (x). But this is also true for
u, v e clco .(x), or the unction p(u)=(U-Uo, v*) is continuous and
affine on X or each u0 e X and v* e X*.
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Next, to establish Proposition 2, we start with the ollowing
notation" Let k e N. For n e No and -(n, n, ..., n) e N0 define

xv(n, a)---- k ,__ T+
where s--n+n+ +n, i-- 1, 2, ., k.

Lemma 4. Let p) l. Suppose that (Tx) is bounded" Tx
Then for each q e N lim n-. Tv(i, a)--v(i+ 1, a) llP--O uniformly
in a e N, where k-2q.

Sketch of Proof. Set k--2 and ]--2q-. For n eNo and
(n, n, ..., n) e N0 define u-- Tv(n, a)-- v(n+ 1, a’) and v- Tv(n,

+v(n+l,q"), where a’-(n, n, ..., n) and "=(n+... +n+, n+,
.., n). (u} and (v) are bounded, for (Tx) is bounded. Note that
u-v-2(Tv(n, a)- v(n+ 1, a)), since v(n, )--2-(v(n, ’)+ v(n, a")). We
can then show that for all n and all ,/)0 with +/--1- .<(n=(1) n- ]--0 a= +(2- 1))/+2-/-n- ]__-] Q,(a).
Here a is defined in Lemma 1 and Q(a) Tv(i, a’)-v(i+ 1, a’)
+[[Tv(i,a")-v(i+l,a")llp. If q=l, Q(q)=0 because a’=nl and
=n,+n., and hence the left hand of (1)vanishes as noo uniformly
in a e N]. By Lemma 1 (ii) we obtain that lim_ n- .: ]u-v.
-0 uniformly in a e N]. This proves that the lemma is true for q= 1.

o" NgNext, assume that the lemma is true or q-1. Then, since .’, e
for a e N0, the second term on the right of (1) vanishes as n-oo
uniformly in a e N0 by the inductive hypothesis, and so the left hand
of (1) vanishes as noo uniformly in a. Hence by Lemma I (ii)
again we see that our assertion is true for q. Thus the lemma will
be proved by induction on q.

Let X X for k e N and let Y= I
__
X and Y 1-I o__ X. Y

is a Banach space with the norm llulll=max_ Ilull, u=(u, u, ..., u)
for each neN. For u=(u,u, ...,u, ...)eY we set
=sup_ Ilull and u]r.=(u,u,. .,u). The next lemma is a slight
generalization of a result of Kakutani [4]; and its proof will be done
with a little change as in [3].

Lemma 5. Let u e Y. Then for each n and each sequence {u}
in Y with ulr wu]y in Yandsup {lllulll, {llu]]]}=M< co, we can

extract a subsequence {m} of {m} such that for all k, ]>__1

where K(k) is a constant independent of n and ] such that K(k)O as

Proof of Proposition 2. Set z--T+x. Consider the sequence
{u} in Y with u- (z, zl, ..., z, ...). Obviously, ]]lu]]]gM since

IITxiIM. Fromtheassumption that Tx )y and Tnx-Tn+ix

it follows that ulr )u]r in Y for each n e N, where u-(y, y, ...)
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e Y. Hence by Lemma 5 there is a subsequence (m} of (n} such
that for i-O, 1, ...,n

IIk-(T,/x-- + T/x)--yll=K(k),
or equivalently v(i, o)-y =K(k), where a (m, m-m, ..., m
--m_). Hence we have that llTy--yll2K(k)+llTv(i,a)--v(i+l,o)ll
for i=0, 1, ..., n--1. Summing with respect to i and dividing by n,
we obtain that

I1Ty--YII<=2K(k)+n- .= Tv(i, ac)--v(i+ 1,
Using HSlder’s inequality, we see from Lemma 4 that the second term
on the right of the above inequality vanishes as n-+c if k-2q. More-
over, since K(k)-->O as k-+c, it ollows that Ty=y, and hence y e Ft.

Proof of Theorem. Note that (Tx} is bounded if and only if
Fr:/:0. Obviously, (b)implies (a) and (a) implies (d). It is a direct
consequence of Proposition 2 that (d) implies (c). Finally, to prove
that (c) implies (b) we may show that w.(x) is a singleton. To this
end let u, v e w(x). Since o(x)cFr by hypothesis, we have u, v e Fr,
and hence ]]u-vll=(u-v,F(u-v))=O by Proposition 1. This gives
that u=v, and so w.(x) is a singleton.
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