48. On the Asymptotic Behavior of Iterates of Nonexpansive Mappings in Uniformly Convex Banach Spaces

By Kazuo Kobayasi

Department of Mathematics, Sagami Institute of Technology (Communicated by Kôsaku Yosida, M. J. A., June 12, 1979)

§ 1. Introduction. Let X^* be the dual of a Banach space X, and denote the value of $x^* \in X^*$ at $x \in X$ by (x, x^*) . The duality mapping F from X into X^* is defined by $F(x) = \{x^* \in X^* : (x, x^*) = \|x\|^2 = \|x^*\|^2\}$ for $x \in X$. The norm of X is said to be Fréchet differentiable if for each x in the unit sphere U of $X \lim_{t\to 0} t^{-t}(\|x+ty\|-\|x\|)$ exists uniformly in $y \in U$. It is known (e.g. see [3]) that the norm of X is Fréchet differentiable if and only if F is single-valued and norm to norm continuous from X to X^* . Let C be a subset of X. A mapping $T: C \to C$ is said to be nonexpansive on C, or $T \in C$ ont C if $\|Tx-Ty\| \le \|x-y\|$ for all $x, y \in C$. We denote by F_T the set of all fixed points of T, and by $\omega_w(x)$ the set of all weak subsequential limits of $\{T^nx\}$. We set $N=\{1,2,\cdots\}$ and $N_0=N\cup\{0\}$.

Throughout this note let X denote a uniformly convex real Banach space, C a nonempty closed convex subset of X, and let $x \in C$ and $T \in \text{Cont}(C)$. Our main result of this note is the following; and the sketch of the proof is given in §2. The complete proof of our result will be given in the subsequent paper.

Theorem. If the norm of X is Fréchet differentiable, then the following four conditions are equivalent:

- (a) $T^n x$ converges weakly as $n \to \infty$,
- (b) $T^n x$ converges weakly as $n \to \infty$ to a fixed point of T,
- (c) $F_T \neq \emptyset$ and $\omega_w(x) \subset F_T$,
- (d) $F_T \neq \emptyset$ and $w \lim_{n \to \infty} (T^n x T^{n+1} x) = 0$.

Remark. This theorem contains the case that X and X^* are uniformly convex. If X is a Hilbert space, this theorem is due to Pazy [7], Bruck [2] and Schöneberg [8]. If $X=L^p(\Omega)$, 1 , then the theorem was announced by Baillon [1]. On the other hand, Miyadera [5], [6] has recently given another extension of a result of [2] and [7], that is our result holds under the condition that <math>X is uniformly convex and F is weakly continuous at 0.

§ 2. Sketch of proof. Our theorem will follow from the following two propositions.

Proposition 1. If the norm of X is Fréchet differentiable, we have that (u-v, F(f-g))=0 for all $u, v \in \operatorname{clco} \omega_w(x)$ and $f, g \in F_T$,

where $\operatorname{clco} \omega_w(x)$ denotes the closed convex hull of $\omega_w(x)$.

Proposition 2. Let $\{n_k\}$ be a sequence in N such that $n_k \to \infty$ and w- $\lim_{k\to\infty} T^{n_k}x = y$. If $\{T^nx\}$ is bounded and w- $\lim_{n\to\infty} (T^nx - T^{n+1}x) = 0$, then $y \in F_T$.

Now, to show the propositions we need the next lemma which follows from the uniform convexity of X.

Lemma 1. Let p>1. Let u_n^{α} and v_n^{α} be elements of X defined for $n \in N$ and $\alpha \in A$, where A is a nonempty set. Put $a_k^{\alpha}=2^{-1}(\|u_n^{\alpha}\|^p+\|v_n^{\alpha}\|^p)-\|2^{-1}(u_n^{\alpha}+v_n^{\alpha})\|^p$. Suppose that $\{u_n^{\alpha}\}$ and $\{v_n^{\alpha}\}$ are bounded.

- (i) If $\lim_{n\to\infty} a_n^{\alpha} = 0$ uniformly in α , then $\lim_{n\to\infty} \|u_n^{\alpha} v_n^{\alpha}\| = 0$ uniformly in α .
- (ii) If $\lim_{n\to\infty} n^{-1} \sum_{k=1}^n a_k^{\alpha} = 0$ uniformly in α , then $\lim_{n\to\infty} n^{-1} \times \sum_{k=1}^n \|u_k^{\alpha} v_k^{\alpha}\|^p = 0$ uniformly in α .

Lemma 2. Let $f \in F_T$. Then for each $k \in N$, $\lim_{n\to\infty} ||T^n z_k(n) - z_k(n+m)|| = 0$ uniformly in $m \in N$, where $z_k(n) = 2^{-k}(T^n x - f) + f$.

Sketch of Proof. Set $u_{n,k}^m = T^m z_k(n) - z_{k-1}(n+m)$ and $v_{n,k}^m = -T^m z_k(n) + f$. From the nonexpansiveness of T it follows that $\{u_{n,k}^m\}$ and $\{v_{n,k}^m\}$ are bounded. Since $u_{n,k}^m - v_{n,k}^m = 2(T^m z_k(n) - z_k(n+m))$, to prove the lemma we may show that for each $k \lim_{n\to\infty} \|u_{n,k}^m - v_{n,k}^m\| = 0$ uniformly in m. To this end, by virtue of Lemma 1 (i) it suffices to show that for each k

$$\lim_{n\to\infty} 2^{-1} (\|u_{n,k}^m\|^p + \|v_{n,k}^m\|^p) - \|2^{-1} (u_{n,k}^m + v_{n,k}^m)\|^p = 0$$

uniformly in m. But this will be proved by induction on k.

Lemma 3. Suppose that the norm of X is Fréchet differentiable. Then $\lim_{n\to\infty} (T^nx-f, F(f-g))$ exists for every $f, g \in F_T$.

Proof. Let $f,g\in F_T$. Set $b_{k,n}=2^k(\|z_k(n)-g\|-\|f-g\|)$. Using Lemma 2, we can obtain that $\lim_{n\to\infty}b_{k,n}$ exists for each k. Moreover $\lim_{k\to\infty}b_{k,n}$ exists uniformly in n. Indeed, since $\|T^nx-f\|\leq \|x-f\|$ for all n, the Fréchet differentiability of the norm of X implies that $\lim_{k\to\infty}b_{k,n}=\lim_{k\to\infty}2^k(\|f-g+2^{-k}(T^nx-f)\|-\|f-g\|)$ exists uniformly in n. Therefore, $\lim_{n\to\infty}\lim_{k\to\infty}b_{k,n}$ exists, and hence

$$\lim_{n\to\infty} (T^n x - f, F(f-g)) = \|f-g\| \lim_{n\to\infty} \lim_{k\to\infty} b_{k,n}$$

exists.

Proof of Proposition 1. Let $f, g \in F_T$. If $u, v \in \omega_w(x)$, there exist subarguances [w'] and [w''] of [w] such that $T^{n'}x \longrightarrow v$ and $T^{n''}x \longrightarrow v$

subsequences $\{n'\}$ and $\{n''\}$ of $\{n\}$ such that $T^{n'}x \xrightarrow{w} u$ and $T^{n''}x \xrightarrow{w} v$.

By Lemma 3 we have $(u-f,F(f-g))\!=\!\lim\nolimits_{n'\to\infty}\left(T^{n'}x\!-\!f,F(f-g)\right)$

$$=\lim_{n''\to\infty} (T^{n''}x-f, F(f-g))$$

$$=\lim_{n''\to\infty} (T^{n''}x-f, F(f-g))$$

$$=(v-f, F(f-g)),$$

and hence (u-v, F(f-g))=0 for $u, v \in \omega_w(x)$. But this is also true for $u, v \in \operatorname{clco} \omega_w(x)$, for the function $p(u)=(u-u_0, v^*)$ is continuous and affine on X for each $u_0 \in X$ and $v^* \in X^*$.

Next, to establish Proposition 2, we start with the following notation: Let $k \in \mathbb{N}$. For $n \in \mathbb{N}_0$ and $\alpha = (n_1, n_2, \dots, n_k) \in \mathbb{N}_0^k$ define

$$v(n, \alpha) = k^{-1} \sum_{i=1}^{k} T^{s_i + n} x_i$$

where $s_i = n_1 + n_2 + \cdots + n_i$, $i = 1, 2, \dots, k$.

Lemma 4. Let p>1. Suppose that $\{T^nx\}$ is bounded: $||T^nx|| \leq M$. Then for each $q \in N \lim_{n\to\infty} n^{-1} \sum_{i=0}^{n-1} ||Tv(i,\alpha)-v(i+1,\alpha)||^p = 0$ uniformly in $\alpha \in N_0^k$, where $k=2^q$.

Sketch of Proof. Set $k=2^q$ and $j=2^{q-1}$. For $n\in N_0$ and $\alpha=(n_1,n_2,\cdots,n_k)\in N_0^k$ define $u_n=Tv(n,\alpha)-v(n+1,\alpha')$ and $v_n=-Tv(n,\alpha)+v(n+1,\alpha'')$, where $\alpha'=(n_1,n_2,\cdots,n_j)$ and $\alpha''=(n_1+\cdots+n_{j+1},n_{j+2},\cdots,n_k)$. $\{u_n\}$ and $\{v_n\}$ are bounded, for $\{T^nx\}$ is bounded. Note that $u_n-v_n=2(Tv(n,\alpha)-v(n+1,\alpha))$, since $v(n,\alpha)=2^{-1}(v(n,\alpha')+v(n,\alpha''))$. We can then show that for all n and all $\lambda,\mu>0$ with $\lambda+\mu=1$

 $(1) n^{-1} \sum_{i=0}^{n-1} \alpha_i^{\alpha} \leq (n^{-1} + (\lambda^{1-p} - 1)) M^p + 2^{-1} \mu^{1-p} n^{-1} \sum_{i=0}^{n-1} Q_i(\alpha).$

Here a_i^{α} is defined in Lemma 1 and $Q_i(\alpha) = \|Tv(i,\alpha') - v(i+1,\alpha')\|^p + \|Tv(i,\alpha'') - v(i+1,\alpha'')\|^p$. If q=1, $Q_i(\alpha)=0$ because $\alpha'=n_1$ and $\alpha''=n_1+n_2$, and hence the left hand of (1) vanishes as $n\to\infty$ uniformly in $\alpha\in N_0^2$. By Lemma 1 (ii) we obtain that $\lim_{n\to\infty} n^{-1}\sum_{i=0}^{n-1}\|u_i^{\alpha}-v_i^{\alpha}\|^p=0$ uniformly in $\alpha\in N_0^2$. This proves that the lemma is true for q=1. Next, assume that the lemma is true for q-1. Then, since $\alpha',\alpha''\in N_0^j$ for $\alpha\in N_0^k$, the second term on the right of (1) vanishes as $n\to\infty$ uniformly in $\alpha\in N_0^k$ by the inductive hypothesis, and so the left hand of (1) vanishes as $n\to\infty$ uniformly in α . Hence by Lemma 1 (ii) again we see that our assertion is true for q. Thus the lemma will be proved by induction on q.

Let $X_k = X$ for $k \in N$ and let $Y_n = \prod_{k=1}^n X_k$ and $Y_\infty = \prod_{k=1}^\infty X_k$. Y_n is a Banach space with the norm $|||u|||_n = \max_{1 \le i \le n} ||u^i||$, $u = (u^1, u^2, \dots, u^n)$ for each $n \in N$. For $u = (u^1, u^2, \dots, u^n, \dots) \in Y_\infty$ we set $|||u|||_\infty = \sup_{i \ge 1} ||u^i||$ and $u|_{Y_n} = (u^1, u^2, \dots, u^n)$. The next lemma is a slight generalization of a result of Kakutani [4]; and its proof will be done with a little change as in [3].

Lemma 5. Let $u \in Y_{\infty}$. Then for each n and each sequence $\{u_m\}$ in Y_{∞} with $u_m|_{Y_n} \xrightarrow{w} u|_{Y_n}$ in Y_n and $\sup_m \{|||u_m|||_{\infty}, |||u|||_{\infty}\} = M < \infty$, we can extract a subsequence $\{m_k\}$ of $\{m\}$ such that for all $k, j \ge 1$

$$|||k^{-1}(u_{m_j}+u_{m_{j+1}}+\cdots+u_{m_{j+k-1}})|_{Y_n}-u|_{Y_n}|||_n \leq K(k)$$

where K(k) is a constant independent of n and j such that $K(k) \rightarrow 0$ as $k \rightarrow \infty$.

Proof of Proposition 2. Set $z_k^i = T^{n_k+i}x$. Consider the sequence $\{u_k\}$ in Y_{∞} with $u_k = (z_k^1, z_k^2, \cdots, z_k^n, \cdots)$. Obviously, $|||u_k|||_{\infty} \leq M$ since $||T^nx|| \leq M$. From the assumption that $T^{n_k}x \xrightarrow{w} y$ and $T^nx - T^{n+1}x \xrightarrow{w} 0$ it follows that $u_k|_{Y_n} \xrightarrow{w} u|_{Y_n}$ in Y_n for each $n \in N$, where $u = (y, y, \cdots)$

 $\in Y_{\infty}$. Hence by Lemma 5 there is a subsequence $\{m_k\}$ of $\{n_k\}$ such that for $i=0,1,\cdots,n$

$$||k^{-1}(T^{m_1+i}x+\cdots+T^{m_k+i}x)-y|| \leq K(k),$$

or equivalently $||v(i,\alpha_k)-y|| \le K(k)$, where $\alpha_k = (m_1, m_2 - m_1, \cdots, m_k - m_{k-1})$. Hence we have that $||Ty-y|| \le 2K(k) + ||Tv(i,\alpha_k)-v(i+1,\alpha_k)||$ for $i=0,1,\cdots,n-1$. Summing with respect to i and dividing by n, we obtain that

$$||Ty-y|| \leq 2K(k) + n^{-1} \sum_{i=0}^{n-1} ||Tv(i,\alpha_k) - v(i+1,\alpha_k)||.$$

Using Hölder's inequality, we see from Lemma 4 that the second term on the right of the above inequality vanishes as $n\to\infty$ if $k=2^q$. Moreover, since $K(k)\to 0$ as $k\to\infty$, it follows that Ty=y, and hence $y\in F_T$.

Proof of Theorem. Note that $\{T^nx\}$ is bounded if and only if $F_T\neq\emptyset$. Obviously, (b) implies (a) and (a) implies (d). It is a direct consequence of Proposition 2 that (d) implies (c). Finally, to prove that (c) implies (b) we may show that $\omega_w(x)$ is a singleton. To this end let $u,v\in\omega_w(x)$. Since $\omega_w(x)\subset F_T$ by hypothesis, we have $u,v\in F_T$, and hence $\|u-v\|^2=(u-v,F(u-v))=0$ by Proposition 1. This gives that u=v, and so $\omega_w(x)$ is a singleton.

References

- [1] J. B. Baillon: Comportment asymptotique des itérés de contraction non linéaires dans les espaces L^p. C. R. Acad. Sci. Paris, 286, 157-159 (1978).
- [2] R. E. Bruck: On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set. Israel J. Math., 29, 1-16 (1978).
- [3] J. Diestel: Geometry of Banach spaces. Lect. Notes in Math., vol. 485, Springer (1975).
- [4] S. Kakutani: Weak convergence in uniformly convex Banach spaces. To-hoku Math. J., 45, 188-193 (1938).
- [5] I. Miyadera: Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces. Proc. Japan Acad., 54A, 212-215 (1978).
- [6] —: Ditto. II. Ibid., 54A, 318-321 (1978).
- [7] A. Pazy: On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert spaces. Israel J. Math., 26, 197-204 (1977).
- [8] R. Schöneberg: Weak convergence of trajectories of nonexpansive semigroups in Hilbert space. Ibid., 30, 130-132 (1978).