41. A Remark on the Hadamard Variational Formula

By Daisuke FUJIWARA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1979)

§ 1. Introduction. Let f(x) be a real valued \mathcal{C}^{∞} function of x in \mathbb{R}^2 . Using this and real number $t \in \mathbb{R}$, we define the open set $\Omega_t = \{x \in \mathbb{R}^2 | f(x) < t\}$. Its boundary is $\gamma_t = \{x \in \mathbb{R}^2 | f(x) = t\}$. We assume the following assumptions for f(x);

(A. 1) Ω_1 is a non empty simply connected bounded domain in \mathbb{R}^2 .

(A. 2) All the $t \in [-1, 0] \cup (0, 1]$ are regular values of f.

(A. 3) Ω_1 contains only one critical point x^0 of f. At this point, the function $f(x^0)$ has its value 0 and it has non-degenerate Hessian of signature of type (1, 1).

We shall consider the Green function $g_t(x, y)$ for the Dirichlet problem in the open set Ω_t for any $t \in [-1, 1]$, that is, $g_t(x, y)$ is the solution for the following boundary value problem;

- (1) $-\Delta g_t(x, y) = \delta(x-y)$ for any x, y in Ω_t .
- and (2) $g_t(x, y) = 0$, if $x \in \gamma_t, y \in \Omega_t$.

When t decreases from 1 to any $\varepsilon > 0$, the open set Ω_t shrinks to $\Omega \varepsilon$. Throughout this process Ω_t is a simply connected domain with its smooth boundary, because (A. 2) and (A. 3) hold. See, for example Milnor [6]. Therefore, the celebrated Hadamard variational formula implies that $(d/dt)g_t(x, y)$ exists for $t \neq 0$ and for any x and y in Ω_t and that

$$(3) \qquad \frac{d}{dt}g_t(x,y) = \int_{\tau_t} \frac{\partial g_t(x,z)}{\partial \nu_z} \frac{\partial g_t(y,z)}{\partial \nu_z} \frac{1}{|\operatorname{grad} f(z)|} d\sigma_z,$$

where $d\sigma_z$ is the line element of γ_t and ν_z is the unit outer normal to γ_t at z. (See Hadamard [5], Garabedian [4], Garabedian-Schiffer [3]. Simpler proof is given in Fujiwara-Ozawa [2].) This enables us to write

(4)
$$g_1(x,y) - g_2(x,y) = \int_a^1 \frac{d}{dt} g_2(x,y) dt$$

for any $x \neq y$ in Ω_{ϵ} if $\epsilon > 0$. Hence the following natural question arises. (Q) Can one replace ϵ in (4) by -1?

This does not seem a trivial problem because the open set Ω_t has two connected components for $t \leq 0$ while it is connected for t > 0. The aim of this note is to prove the following affirmative answer to this question (Q).

Theorem 1. For any $x \neq y$ in Ω_{-1} , we have

No. 5] On the Hadamard Variational Formula

(5)
$$\int_{-1}^{1} \left| \frac{d}{dt} g_{\iota}(x, y) \right| dt < \infty$$

and

(6)
$$g_1(x, y) - g_{-1}(x, y) = \int_{-1}^{1} \frac{d}{dt} g_t(x, y) dt.$$

§2. Green functions. We begin with the following four well known facts. (See, for example, Courant-Hilbert [1].)

Proposition 1. $g_t(x, y) \ge 0$ for any x and y in Ω_t and for any t in [-1, 1].

Proposition 2. $g_t(x, y) \le g_t(x, y)$ if $t \le t'$ and $x, y \in \Omega_t$. Proposition 3. $g_t(x, y)$ is a continuous function of x in $\overline{\Omega}_t \setminus \{y\}$. Proposition 4. In the case $t \le 0$, we have $g_t(x, y) = 0$

(7) $g_t(x, y) = 0$ if x and y belong to different components of Ω_t .

Lemma 5. At every x and y in Ω_0 with $x \neq y$, the limit

(8)
$$g_0^-(x, y) = \lim_{\epsilon \downarrow 0} g_{-\epsilon}(x, y)$$

exists.

Proof. We fix two arbitrary points x and y in Ω_0 . Then, there exists some $\delta > 0$ such that x and y are contained in $\Omega_{-\delta}$. The sequence of numbers $\{g_{-\epsilon}(x, y)\}$ forms an increasing sequence when ϵ decreases to 0. On the other hand, Proposition 2 gives $g_{-s}(x,y) \leq g_{0}(x,y).$ (9) This proves Lemma 5. Lemma 6. $g_0^-(x, y) = g_0(x, y)$ for any $x, y \in \Omega_0$ satisfying $x \neq y$. **Proof.** We want to prove that (10) $h(x) = g_0(x, y) - g_0^-(x, y)$ vanishes identically in Ω_0 . This function h(x) is the limit of (11) $h_{s}(x) = g_{0}(x, y) - g_{-s}(x, y).$ We have, by Propositions 1 and 2, that (12) $0 \leq h_{*}(x) \leq g_{0}(x, y) \quad \text{if } x \in \Omega_{-*} \setminus \{y\}.$ Since $h_{\epsilon}(x)$ is harmonic in $\Omega_{-\delta}$ for any $\delta > \epsilon > 0$, h(x) is harmonic in $\Omega_{-\delta}$ by virtue of Harnack's theorem. This implies that h(x) is harmonic in Ω_0 . Therefore, Lemma 6 will be proved if we prove $\lim h(x) = 0.$ (13)(12) implies that (14) $0 \le \liminf h(x) \le \limsup h(x) \le \limsup g_0(x, y) = 0.$

Hence (13) is proved.

(15) Lemma 7. If x and y are different points in Ω_0 , $g_0^+(x, y) = \lim_{\epsilon \to 0} g_\epsilon(x, y)$

 $x \rightarrow \gamma_0$

exists.

Proof. For any $x \neq y \in \Omega_0$, we have

(16) $g_{0}(x, y) > g_{0}(x, y) > 0.$ On the other hand $\{g_{\epsilon}(x, y)\}$ forms a non-decreasing sequence when ϵ tends to 0 decreasingly. This proves Lemma 7. **Lemma 8.** For any different points x and y in Ω_0 , we have (17) $g_0^+(x, y) = g_0(x, y).$ **Proof.** We want to prove $h(x) = g_0^+(x, y) - g_0(x, y)$ (18)vanishes identically in Ω_0 . This function is the limit of (19) $h_{\varepsilon}(x) = g_{\varepsilon}(x, y) - g_{0}(x, y)$ when ε goes to 0 decreasingly. The function $h_{\varepsilon}(x)$ is harmonic in Ω_{0} and it satisfies the inequality (20) $0 \le h_s(x) = g_s(x, y) \le g_1(x, y)$ on γ_0 . It follows from this and Harnack's theorem that h(x) is harmonic in Ω_0 and satisfies (21) $0 \leq h(x)$. Lemma 8 will be proved if we prove (22) $\lim h(x)=0,$ $x \rightarrow \tau_0 \setminus \{x^0\}$ because h(x) is harmonic in Ω_0 and the one point set $\{x^0\}$ is of harmonic measure 0 in γ_0 .

(22) follows from (21) and

(23)

$$\limsup_{x \to \tau_0 \setminus \{x^0\}} h(x) \leq 0.$$

Now we prove (23). Assume that x tends to x' in $\gamma_0 \setminus \{x^0\}$. Then, there exists a domain Ω' with the following properties;

(i) $\Omega' \supset \Omega_0$.

- (ii) The boundary $\partial \Omega'$ of Ω' is smooth.
- (iii) In some neighbourhood U of x', $\partial \Omega'$ coincides with $\gamma_0 \cap U$.

An example of such Ω' is indicated in Fig. 1, where dotted line shows $\partial \Omega_0$.

Fig. 1

Let g'(x, y) be the Green function for the Dirichlet problem in Ω' . We claim that

(24) $g_0^+(x, y) \le g'(x, y).$ If this is the case, we can prove (25) $\limsup_{x \to x'} h(x) \le 0.$ In fact, letting $x \to x'$ in (24), we have (26) $\limsup_{x \to x'} h(x) = \limsup_{x \to x'} g_0^+(x, y) \le \limsup_{x \to x'} g'(x, y) = 0,$

182

because of property (iii) of Ω' .

In order to prove (24), we introduce the domain

$$\Omega_t' = \{x \in \mathbf{R}^2 \mid \text{dist}(x, \overline{\Omega}') < t\},\$$

where dist $(x, \overline{\Omega}')$ denotes the distance from x to $\overline{\Omega}'$. Let $g'_t(x, y)$ denote the Green function for the Dirichlet problem in the domain Ω'_t . Since Ω' is smooth, the Hadamard variational formula implies that

(27) $\lim g'_t(x, y) = g'(x, y)$

for any $x \neq y$ in Ω' .

For any t>0, there exists $\varepsilon_0>0$ such that $\Omega_{\epsilon}\subset \Omega'_{t}$ for any positive ε satisfying $\varepsilon < \varepsilon_0$. This implies that

(28)
$$g_{\varepsilon}(x, y) \leq g'_{t}(x, y)$$
 for any $\varepsilon \leq \varepsilon_{0}$.

Letting $\varepsilon \downarrow 0$, we have

(29)
$$g_0^+(x, y) \leq g_t'(x, y)$$

if $x \neq y$ in Ω_0 . Letting t tend to 0, we have (24) because of (27). Lemma 8 has been proved.

We have proved

Theorem 2. For any
$$x \neq y$$
 in Ω_0 , we have

(30)
$$g_0(x, y) = \lim_{\varepsilon \downarrow 0} g_\varepsilon(x, y)$$

(31)
$$g_0(x, y) = \lim_{i \neq 0} g_i(x, y)$$

§3. Proof of Theorem 1. Hadamard variational formula (3) gives

(32)
$$g_1(x, y) - g_n(x, y) = \int_a^1 \frac{d}{dt} g_t(x, y) dt \quad \text{for } \forall x, y \text{ in } \Omega_0$$

and

(33)
$$g_{-\delta}(x,y) - g_{-1}(x,y) = \int_{-1}^{-\delta} \frac{d}{dt} g_{t}(x,y) dt \quad \text{for } \forall x, y \in \Omega_{-1},$$

if $\varepsilon > 0$ and $\delta > 0$. Therefore, Theorem 2 implies that

(34)
$$\lim_{t \downarrow 0} \int_{t}^{1} \frac{d}{dt} g_{t}(x, y) dt \quad \text{and} \quad \lim_{\delta \downarrow 0} \int_{-1}^{-\delta} \frac{d}{dt} g_{t}(x, y) dt$$

exist. Moreover, we have

(35)
$$g_1(x, y) - g_{-1}(x, y) = \lim_{t \to 0} \int_t^1 \frac{d}{dt} g_t(x, y) dt + \lim_{\delta \to 0} \int_{-1}^{-\delta} \frac{d}{dt} g_t(x, y) dt.$$

The Hadamard variational formula (3) implies that $(d/dt)g_t(x, y)$ is continuous even at x=y if $t\neq 0$. Thus, we put

$$\frac{d}{dt}g_{\iota}(y, y) = \lim_{x \to y} \frac{d}{dt}g_{\iota}(x, y).$$

Then, we have from (3) that

$$(36) \qquad \qquad \frac{d}{dt}g_t(y,y) \ge 0$$

and the Hadamard's inequality (Hadamard [5])

D. FUJIWARA

(37)
$$\left|\frac{d}{dt}g_{\iota}(x,y)\right| \leq \left(\frac{d}{dt}g_{\iota}(x,x)\right)^{1/2} \left(\frac{d}{dt}g_{\iota}(y,y)\right)^{1/2}.$$

Since $h_i(x) = g_1(x, y) - g_i(x, y)$ is harmonic even at x = y, we can take the limit of both sides of (32) when x tends to y. And we have

(38)
$$h_{\iota}(y) = \int_{\iota}^{1} \frac{d}{dt} g_{\iota}(y, y) dt, \quad \text{for any } y \in \Omega_{0}$$

The harmonic function $h_{\epsilon}(x)$ satisfies

$$0 \le h_{\epsilon}(x) \le g_{1}(x, y)$$

for any x in Ω_0 and it converges to the harmonic function $g_1(x, y) - g_0(x, y)$ if $x \neq y$. Therefore $h_i(x)$ converges also at x = y by virtue of mean value theorem and Harnack's theorem. Hence we have

(40)
$$\lim_{s \downarrow 0} h_s(y) = \lim_{s \downarrow 0} \int_s^1 \frac{d}{dt} g_t(y, y) dt.$$

This and (36) imply that $(d/dt)g_i(y, y)$ is Lebesgue integrable over [0, 1], that is,

(41)
$$\int_0^1 \frac{d}{dt} g_t(y, y) dt < \infty \qquad \text{for any } y \text{ in } \Omega_0.$$

Similarly, we can prove

(42)
$$\int_{-1}^{0} \frac{d}{dt} g_{t}(y, y) dt < \infty \quad \text{for any } y \text{ in } \Omega_{0}.$$

Thus, we have proved

(43) $\int_{-1}^{1} \frac{d}{dt} g_{\iota}(y, y) dt < \infty \quad \text{for any } y \text{ in } \Omega_{0}.$

This and Hardamard's inequality (37) prove

(44)
$$\int_{-1}^{1} \left| \frac{d}{dt} g_t(x, y) \right| dt < \infty.$$

It follows from this and (35) that

$$g_1(x, y) - g_{-1}(x, y) = \int_{-1}^{1} \frac{d}{dt} g_1(x, y) dt$$

as a Lebesgue integral. Theorem 1 has been proved.

References

- [8] Courant, R., and Hilbert, D.: Methoden der Mathematischen Physik Band
 2. Springer, Berlin (1937).
- [2] Fujiwara, D., and Ozawa, S.: The Hadamard variational formula for the Green functions of some normal elliptic boundary value problems. Proc. Japan Acad., 54A, 215-220 (1978).
- [3] Garabedian, P. R., and Schiffer, M.: Convexity of domain functionals. J. Anal. Math., 2, 281-368 (1952-53).
- [4] Garabedian, P. R.: Partial Differential Equations. J. Wiley & Sons, Inc., New York (1964).
- [5] Hadamard, J.: Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées. Oeuvre, C.N.R.S., 2, 515-631 (1968).
- [6] Milnor, J.: Morse theory. Ann. of Math. Studies, no. 51, Princeton Univ. press (1963).

184