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1. Introduction. Let f(x) be a real valued C function of x in
R. Using this and real number teR, we define the open set /2,

(x R21f(x) t). Its boundary is ’ {x e R2 f(x) t}. We assume
the following assumptions or f(x);

(A. 1) 91 is a non empty simply connected bounded domain in R.
(A. 2) All the t e [--1, 0) (0, 1] are regular values of f.
(A. 3) [21 contains only one critical point x of f At this point,

the function f(x) has its value 0 and it has non-degenerate Hessian of
signature of type (1, 1).

We shall consider the Green function g,(x, y) or the Dirichlet
problem in the open set /2 for any t e [--1, 1], that is, g(x, y) is the
solution or the following boundary value problem;
( 1 ) --Agt(x, y)=(x--y) for .any x, y in tgt.
and
( 2 ) g(x, y)--O, if x , y [2t.

When decreases rom 1 to any e0, the open set/2 shrinks to/2e.

Throughout this process is a simply connected domain with its
smooth boundary, because (A. 2) and (A. 3) hold. See, for example
Milnor [6]. Thereore, the celebrated Hadamard variational ormula
implies that (d/dt)g(x, y) exists or =/=0 and or any x and y in/2t and
that

d gt(x, y)--; 3gt(x, Z) 3gt(Y, Z) 1 daz,( 3 ) d- r ,z 3, [grad f(z)[
where da is the line element o yt and , is the unit outer normal to yt

at z. (See Hadamard [5], Garabedian [4], Garabedian-Schiffer [3].
Simpler proof is given in Fujiwara-Ozawa [2].) This enables us to write

: d (x, y)dt(4) gl(x, y)--g,(x, y)- -gt
or any x :/:y in/2 i e0. Hence the ollowing natural question arises..

(Q) Can one replace e in (4) by -1?
This does not seem a trivial problem because the open set /2t has two
connected components or t

_
0 while it is connected or t0. The aim

o this. note is to prove the ollowing affirmative answer to this question
(Q).

Theorem 1. For any x:/::y in [2_, we have
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(5)

and

-gt(x, y) dt c

( 6 ) g(x, y)--g_(x, y)- gt(x, y)dt.

2. Green functions. We begin with the following our well
known acts. (See, or example, Courant-Hilbert [1].)

gt(x, y)_0 for any x and y in [2 and for any t inProposition 1.
[--, ].

Proposition 2.

Proposition 3.
Proposition 4.

(7)

gt(x, y)_gv(x, y) if tt’ and x, y e
g(x, y) is a continuous function of x in
In the case t_O, we have

gt(x, y)--0
if x and y belong to different components of tot.

Lemma 5. At every x and y in [20 with x:/:y, the limit
( 8 ) g(x, y)= lira g_(x, y)

e$0

exists.
Proof. We fix two arbitrary points x and y in too. Then, there

exists some0 such that x and y are contained in 9_. The sequence
of numbers. (g_(x, y)} forms an increasing sequence when decreases
to 0. On the other hand, Proposition 2 gives.

( 9 ) g_(x, y)_go(X, y).
This proves Lemma 5.

Lemma 6. g(x, y)=go(X, y) for any x, y e 90 satisfying x:y.
Proof. We want to prove that

(10) h(x)--go(X, y)--g(x, y)
vanishes identically in/20. This unction h(x) is. the limit of
(11) h(x) go(X, y) g_(x, y).
We have, by Propositions I and 2, that
(12) O_h(x)_go(X, y) if x e 9_\(y}.
Since h(x) is harmonic in/2_ or any e0, h(x) is harmonic in 9_
by virtue o Harnack’s theorem. This implies that h(x) is harmonic
in 90. Therefore, Lemma 6 will be proved if we prove
(13) lim h(x) O.

(12) implies that
(14) 0_lim inf h(x)_lim sup h(x)_lim sup go(X, y)=0.

-F --F --F

Hence (13) is proved.
Lemma 7. If x and y are different points in/20,

(15) g(x, y)= lira g(x, y)
0

exists.
Proof. For any x :/:y e too, we have
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(16) g(x, y) >_ g0(x, y)_> 0.
On the other hand (g(x, y)} forms a non-decreasing sequence when
tends, to 0 decreasingly. This proves Lemma 7.

Lemma 8. For any different points x and y in [20, we have
(17) g(x, y)-go(X, y).

Proof. We want to prove
(18) h(x) g(x, y) go(X, y)
vanishes identically in/2o. This, function is. the limit of
(19) h(x) g(x, y) go(X, y)
when goes to 0 decreasingly. The function h,(x)is harmonic in tg0
and it satisfies the inequality
(20) O_h(x)=g(x, y)_g(x, y) on ’0.
It follows 2rom this and Harnack’s theorem that h(x) is harmonic in
/2o and satisfies
(21) O<_h(x).
Lemma 8 will be proved i we prove
(22) lim h(x) O,

-o\{o}

because h(x) is harmonic in 90 and the one point set {x} is, of harmonic
measure 0 in

(22) follows, from (21) and
(23) lim sup h(x)<_ O.

-ro\{xO}

Now we prove (23). Assume that x tends to x’ in ;,0\{x}. Then, there
exists a domain tg’ with the following properties;

( )
(ii) The boundary 39’ of/2’ is. smooth.
(iii) In some neighbourhood U of x’, 39’ coincides, with ’0 U.

An example of such 9’ is indicated in Fig. 1, where dotted line shows

Fig. 1

Let g’(x, y) be the Green function for the Dirichlet problem in/2"

We claim that
(24) g (x, y)<_g’(x, y).
If this is. the case, we can prove
(25) lim sup h(x)<_ O.

In fact, letting x--+x’ in (24), we have
(26) lim sup h(x): lim sup g(x, y)<_lim sup g’(x, y):0,
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because of property (iii) of 9’.
In order to prove (24), we introduce the domain

/2’= {x e R dist (x,/2’) < t},
where dist (x, 9’) denotes, the distance from x to 9’. Let g(x, y) denote
the Green unction or the Dirichlet problem in the domain 9’. Since
/2’ is smooth, the Hadamard variational 2ormula implies that

(27) lim gt(x Y)-- g’(x, y)
t$O

for any x=y in/2’.

For any t0, there exists. 00 such that /2,c9’t for any positive
e satisfying ee0. This implies that
(28) g,(x, y)_g’(x, y) for any e_e0.
Letting e $ 0, we have
(29) g(x, y)

_
g(x, y)

if x =/=y in/2o. Letting t tend to 0, we have (24) because of (27). Lemma
8 has been proved.

We have proved
Theorem 2. For any x=/=y in [2o, we have

go(X, y)= lim g,(x, y)

go(X, y)= lim g,(x, y).

Proof of Theorem 1. Hadamard variational formula (3)

(30)

(31)

gives

(32)

and

g(x, y)--g(x, y)--fl d
-gt(x, y)dt for vx, y in/20

f- -gt(x,(33) g_(x, y)--g_l(x, y)= y)dt for vx, y e 9_1,
-1

if eO and 30. Therefore, Theorem 2 implies, that

(34) lim: d ddt-g(x,,o -g(x, y)dt and lim,o y)dt

exist.

(35)

Moreover, we have

gl(x, y)--g_l(x, y)-- lim,d0
--z-:-. gt(x, y)dt+limo --d--gt(x, y)dt.

The Hadamard variational formula (3) implies that (d/dt)gt(x, y)
is continuous even at x-y if t =/= 0. Thus., we put

d--dgt(Y’d y)= lim --gt(x, y).

Then, we have from (3) that

(36)
dt
gt(Y, Y)

_
0

and the Hadamard’s inequality (Hadamard [5])
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(37) d d \// d y))/’.
Since h,(x)=g(x, y)-g(x, y) is harmonic even at x=y, we can

take the limit of both sides o (32) when x tends to y. And we have

(38) h(y)= g(y, y)dt, for any y e 90.

The harmonic unction h(x) satisfies
(39) Oh,(x)g(x, y)
or any x in 90 and it converges to the harmonic 2unction g(x, y)-
go(X, y) if x#y. Therefore h,(x) converges also at x=y by virtue of
mean value theorem and Harnack’s theorem. Hence we have

(40) limo h(y)=limo I g(Y’ y)dt.

This and (36) imply that (d/dt)g(y, y) is Lebesgue integrable over [0, 1],
that is,

(41) -gt(Y, y)dt< for any y in 9o.

Similarly, we can prove

0_ d(42) gt(Y, y)dt or any y in 90.

Thus, we have proved

(4g) g(g, )gt< for any g in 9o.

his and Hardamard’s inequality (87) prove

It follows from this. and (gg) that

(z, --_(z, -- (,
as a Lebesgue integral. Theorem 1 has been roved.
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