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34. Family of Varieties Dominated by a Variety

By Kazuhisa MAEHARA
Tokyo Institute of Polytechnics

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1979)

1. Introduction. Let/c be an algebraically closed field of char-
acteristic zero. We assume all varieties are defined over k. In this
note we prove a finiteness theorem for the isomorphism classes of
canonically polarized varieties dominated by any given variety.

It was proved by Severi that only finitely many (up to isomor-
phism) curves of genus >__2 can be dominated by a given variety over
any algebraically closed field (cf. [16]).

As a generalization of this result in higher dimensional cases over
/, we shall prove the following

Main Theorem. Only finitely many (up to isomorphism) canon-
ically polarized varieties can be dominated by a given variety.

The author would like to express his hearty thanks to Profs. Iitaka,
Horikawa and Fujita for valuable advice, and to Prof. Karasawa for
encouragement, and to Mr. Aoki for typewriting.

2. Statement of results. We fix our notation. In this note,
by a "variety" we shall always mean a proper integral algebraic space
over k. A non-singular variety will be said to be canonically polarized
if the canonical invertible sheaf is ample.

We denote by 0x, and Kx the sheaf of regular tangent vectors.,
thee sheaf of differential n-forms and the canonical invertible sheaf on
a non-singular variety X, respectively.

Let X be a variety. (X) denotes the set {(f, Y)} of pairs (f, .Y)
each of which consists of a projective non-singular variety Y and a
surjective morphism f" XY. (fl, Y), (f2, Y2)e (X) are said to be
isomorphic to each other (or isomorphic in the strong sense) if there is
an isomorphism g" Y-Y2 (or g f=f2).

F(X) denotes the subset of (X) consisting of {(f, Y)} with canon-
ically polarized varieties. (Y}.

Now our Main Theorem can be stated as follows."
Theorem 1. (X) is finite up to isomorphism in the strong

sense.
We can also show the following
Theorem 2. F(X) is at most countable up to isomorphism.
Shortly speaking at most countable (up to isomorphism) non-sin-

gular projective varieties can be dominated by X.
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Remark 2.1. Let (X) be a subset of (X)consisting of {(f, Y)}
with H(Y, f*r)=0. Then (X) is at most countable up to iso-
morphism in the strong sense (see Horikawa [7]). Note that H(Y,
f*r)=0 if a general fibre of f is connected and H(Y,

Remark 2.2. Let M be a compact integral Khler space in the
sense of Fujiki [2]. (M) denotes the set ((f, N)} of pairs (f, N) each
of which consists of a compact Khler manifold N and a surjective
morphism f" MN. Then (M) is at most countable up to iso-
morphism (see Fujiki [3]).

We have the following result of varieties of general type. For
given variety X, fix a sufficiently large number L>_2 dim X+l. Let
A(X) denote the set {(f, Y)} of pairs (f, Y) each of which consists of
closed non-singular subvariety of P and a surjective morphism f" X
--Y. For a positive integer m, let B(X) be a subset of A(X) which
satisfies the following condition.

1) There exists an effective divisor linearly equivalent to mKr
--Hr where Hr denotes a hyperplane section of Y. Note that a) any
projective non-singular variety Y with dimYdimX can be embedded
in P, b) Y e A(X) is of general type if and only if Y
positive integer m.

Proposition :.1. The above B(X) is finite up to isomorphism in
the strong sense for each m.

Proposition :.2. Let X be a non-singular projective variety.
Let B(X) be a subset of A(X) which satisfies one of the following two
conditions.

1) The Hilbert polynomial (X, m(Hx+f*Hr)) are equal to a fixed
polynomial P(m) where Hx is a fixed very ample invertible sheaf on
X.

2) h(X, m(Hx+f*H))=P(m) for m>=mo where P(m) is a fixed
polynomial, mo is a fixed integer and Hx-Kx is ample.
Then B(X) is finite up to isomorphism.

Proposition :.:. Let X be a variety, Lx a fixed locally free
coherent sheaf on X. Let C(X, Lx) be a subset of A(X) which satisfies
one of the following two conditions.

1) There exists a non-zero homomorphism f*Hr--Lz for any
(f, Y)e C(X, Lx).

2) There is a linear projection p which makes the following dia-
gram commutative"

XZLProj SF(X, Lx)= P(F(X, Lx)) (rank Lx= 1);
Y=-- I’L for any (f Y) C(X, Lx).
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Then C(X, Lx) is finite up to isomorphism.
Proposition 3.4. Let X be a projective non-singular variety, Lx

a locally free coherent sheaf on X. Let (X, Lx) be a subset of (X)
satisfying the following two conditions.

1) For any (f Y) e (X, Lx) and a fixed integer t0, there exists
an invertible sheaf Dr on Y such that Kr+Dr and (t- 1)Krq-tDr are
ample.

2) There exists a non-zero homomorphism f*(Kr+ Dr)-+9(R)Lx
where n=dim Y, for any (f, Y)e (X, Lx).
Then (X, Lx) is finite up to isomorphism.

Remark 4. 1) If X is a proper non-reduced algebraic space over
C, ff(X) is finite up to isomorphism but not always finite in the strong
sense.

2) Let k be a field of characteristic zero. Even when all varieties
are defined over k, Main Theorem holds.

3. Proof of Theorem 1. We now give an outline of the proof
of Theorem 1. By Moishezon [13], we have a surjective morphism
from a projective non-singular variety X onto X. Hence, replacing
X by X, we may assume X to be projective and non-singular.

Lemma 1. There are only finitely many polynomials of the form
(Y, mKr)=(--1) dim H(Y, mKr), where Y e (X).

Proof. By the Kodaira vanishing theorem, we have

x(Y, mKr)=h(Y, mKv) for m2.
We have the following inequality

O<:h(Y, mKr)<=h(X, St2x),
where S denotes m-th symmetric product and n-- dim Y<__ dim X.
The lemma follows from the fact that a polynomial of degree n is
determined by its (n+ 1) values. Q.E.D.

By Lemma 1 and Matsusaka [12], we have a positive integer m0
such that moKr is very ample for every Y e (X). Hence there is a
projective space P in which every Y e (X) can be embedded in such
a way that moKr-Hr, where Hr denotes a hyperplane section.

Next we consider the graph F of f" X-Y, (Y e (X)). Then

FcXP. Take a very ample invertible sheaf Hx on X such that
Hz(R)KT is ample. Note that the invertible sheaf Hz(R)He-H on X
P is very ample.
Lemma 2. There are only finitely many polynomials of the form

Z(F, mHr), where (f Y) e (X).
Proof. By the Kodaira vanishing theorem, we have
Z(F, mHr)=Z(X, m(Hz+f*moKr))-- h(X, m(Hx+f*moKr))

or m>_ 1.
We have the following inequality

0<= h(X, m(Hx+f*moKr)) h(X,
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In a similar manner as in the proof of Lemma 1, we can complete the
proof. Q.E.D.

We parametrize morphisms from X into P by an open subscheme
Hom (X, P) of the Hilbert scheme Hilbxe. For our purpose, we
have only to consider the components Hom (X, P) where p(m) are
the polynomials determined by Lemma 2. Let Hom* (X, P) be the
union of them. By Grothendieck [6], the Hilbert scheme Hilb is
projective. Hence Hom* (X, P) is a Noetherian scheme. We use
repeatedly the fact that if ]" WW’ is an immersion and W’ is. a
Noetherian scheme, then W is. also a Noetherian scheme. We have
the natural commutative triangle

XHom* (X, P)-----P Horn* (X, P)

Horn* (X, P).
Let F be a universal member of the Hilbert functor. We denote by
the image of Fo.x,e given by the projection

X PHom* (X, P)--PHom* (X, P).
There is a flattening stratification on Hom* (X, P) with respect to.. Namely Hom* (X, P)- ]_[,e Z, with I being a finite set such that

,-z, is fiat for each i with respect to the natural morphism
cP Horn* (X, P)--*Hom* (X, P).

Every Y e (X) is isomorphic to a fibre of ’, over t Z, for some
iI. Set Z-{Z; is smooth} and Z={eZ;,e(X)}.
Then ZcZ. By EGA IV [5] (chap. III, p. 183, (iii) of Theorem
(12.2.4)), Z is open in Z,.

Thus we have a finite number of Noetherian schemes {S} and
smooth morphisms -S such that every Y e (X) is isomorphic to a
fibre of one of ,. (For example, set {S}-{Z}.) Moreover, taking
a finer stratification, we may assume that all the S are smooth.

Lemma :} (Horikawa [7]. Compare also Fujita [4] p. 789 (4.5)
lemma.). Let X be a complete non-singular variety and let q C--S
be a proper smooth morphism, where S is a regular affine variety.
Suppose tha$ we have the following commutative triangle

such that is sur]ective.
S

Then the Koclaira-Speeer map
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is a zero map.
Proof.

diagram"

o (Oa),--->Hl(Ct (Oc/a),) for all t S

From the smoothness of p and q, we have a commutative

(,) Os -----Rlp,*O4/s

p: Os Rq.O/s
he ma I’H(, (O/s))N(X,(O/s)) is injeetive. Indeed,

letting f" XY be a surjeetive morphism where X and Y are eom-

91ere non-singular varieties, we shall show hat the homomorphism

f H(g, ff)H(X, f*)
induced from f is injeetive, where is a locally free -odule of
finite ype. We often use the following claim:

Let g" XX and h" XXa be morphisms and le be a locally
free x-odule of finite ype, and if (hog):H(X,)H(X,
(ho )*) is injeetive for some 0, then h’H(X,)H(X,
is also injeetive. Suppose tha dim X>dim . By the Sein-faetori-
zation of f, we may assume tha fibres of f are connected. In this
ease, consider a general hyerplane section L of X sueh tha fl:L
Y is surjeeive. By the claim above, we can replace X by L. hus
i suees to rove for the ease in which dim X=dim Y. Le " XX
be the normalization. We have he raee homomorphism

Tr B(X, u*f*)H(Y, ).
hen r f is a multiple ma, which is injeetive. Hence f is

injeetive. herefore, he injeeiviy of I has been proved. By he
diagram (,), we have p=0 for all t e S. .E.D.

By virtue of Kodaira-Speneer [1], he smooth family
q
S is

locally trivial if dim H(, (ON/s)) is constant and p=0 for all t e S.
Since dim H(, (ONzs)) is uar-semi-eontinuous, we have a sraifi-
cation S of S such ha dim H(, (ON/s)) is eonsang on each
stratum S and S is smooth and eonneeed. Hence, by Lemma 8, he
fibre of =q-(S)S are isomorphie o each oher.

Applying this result to S, we infer tha here are only finite-
ly many manifolds up o isomorphism whieh appaar as a fibre

S for some . herefore (X) is finite up to isomorphism.
By virtue of a theorem of Kobayashi-Oehiai [9], (X) is finite up

to isomorphism in he strong sense. Hence we complete the
of Theorem 1. .N.D.
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