31. On the Unique Maximal Idempotent Ideals of Non-Idempotent Multiplication Rings

By Takasaburo Ukegawa
Faculty of General Education, Kobe University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1979)

In the preceding paper [5], we have defined multiplication rings, shortly M-rings, as rings s.t. for any ideals \mathfrak{a}, \mathfrak{b}, with $\mathfrak{a}<\mathfrak{b}$, there exist ideals $\mathfrak{c}, \mathfrak{c}^{\prime}$, s.t. $\mathfrak{a}=\mathfrak{b c}=\mathfrak{c}^{\prime} \mathfrak{b}$; here " $<$ " means a proper inclusion. An M ring is called non-idempotent, if $R>R^{2}$. We have proved that the unique maximal idempotent ideal b of a non-idempotent M-ring can be obtained as an intersection of some ideal sequence $\left\{\mathfrak{b}_{\alpha}\right\}_{\wedge}$, where \mathfrak{b}_{α} are
 that \mathfrak{b} is an essential submodule of R, both as a left and also as a right R-module, and at the end of the section we shall give an example of a non-idempotent M-ring with $\mathfrak{b} \neq\{0\}$. If moreover R is left Noetherian, and let N denote the Jacobson radical of R, then by Theorem 5 (i) [5], $N \subseteq \oint$ or $N=\oint_{\alpha}^{j}$ for some ordinal α and some positive integer j. If $N=\mathfrak{b}$ or $N=\mathfrak{b}_{\alpha}^{j}$, then by Theorem 5 (ii) [5] and Nakayama's lemma $\mathfrak{b}=\{0\}$, so we have to consider the case $N<\mathfrak{b}$ only; so in $\S 2$ we consider left Noetherian non-idempotent M-rings, and prove that any ideal, which is maximal in the set of ideals properly contained in \mathfrak{b}, is a prime ideal of R.

1. Non-idempotent M-rings. Lemma 1. Let R be a nonidempotent M-ring, and let \mathfrak{a} be any ideal, s.t. $\mathfrak{a} \subseteq \mathfrak{d}$ then $\mathfrak{d a}=\mathfrak{a d}=\mathfrak{a}$; furthermore for an ideal \mathfrak{b}^{\prime} s.t. $\mathfrak{b} \subseteq \mathfrak{b}^{\prime}, \mathfrak{a} \mathfrak{b}^{\prime}=\mathfrak{b}^{\prime} \mathfrak{a}=\mathfrak{a}$.

Proof. If $\mathfrak{a}=\mathfrak{b}$, there is nothing to prove. If $\mathfrak{a}<\mathfrak{d}$, then $\mathfrak{a}=\mathfrak{d b}=\mathfrak{b}^{\prime} \mathfrak{b}$ for some ideals $\mathfrak{b}, \mathfrak{b}^{\prime}$, therefore $\mathfrak{a} \mathfrak{d}=\mathfrak{b}^{\prime} \mathfrak{b} \cdot \mathfrak{b}=\mathfrak{b}^{\prime} \mathfrak{b}=\mathfrak{a}$. Similarly $\mathfrak{d a}=\mathfrak{a}$.

Lemma 2. Let R be a non-idempotent M-ring, and let $N<\mathfrak{D}$, then $N=\bigcap_{I \in \mathfrak{R}} I=\bigcap_{J \in \mathfrak{R}} J$, where \mathfrak{M} and \mathfrak{N} denote the set of maximal left ideals of R, and all maximal right ideals of R respectively.

Proof. In general, $N R \subseteq \bigcap_{I \in M} I \subseteq N$, and $\bigcap_{I \in M} I$ is an ideal of R. By Lemma $1 N=N R$, hence equality holds.

Theorem 1. Let R be a non-idempotent M-ring. If $R \neq N$, then $N=\bigcap_{I \in \mathfrak{R}} I=\bigcap_{J \in \mathfrak{R}} J$, where $\mathfrak{M}, \mathfrak{n}$ is the same as Lemma 2.

Proof. By Proposition 4 [5], $N=R$ or $N \subseteq \mathfrak{b}$. If $N=\mathfrak{b}$, then \mathfrak{d} $=\mathfrak{d} R=N R \subseteq \bigcap_{I \in \mathfrak{M}} I \subseteq \mathfrak{d}$, therefore $\mathfrak{d}=N=\bigcap_{I \in \mathfrak{M}} I$. If $N<\mathfrak{d}$, the results follow by Lemma 2.

Lemma 3. Let R be a non-idempotent M-ring, and let I be any maximal left ideal of R, then $I \delta=\mathfrak{D}$. The similar results hold for right
ideals.
Proof. Assume that $\mathfrak{b} \not \subset I$. If $I R \not \subset I$, then $(I R, I)=R$ since I is a maximal left ideal of R, therefore $\mathfrak{\delta}=R \mathfrak{d}=(I R, I) \mathfrak{d}=(I \mathfrak{b}, I \mathfrak{D})=I \mathfrak{b}$, i.e. $I \mathfrak{b}=\mathfrak{b}$. If $I R \subseteq I$, then I is an ideal, hence $I \subseteq \mathfrak{b}$ or $I=\mathfrak{b}_{\alpha}^{\rho}$ for some ordinal α and some positive integer ρ, since I is a maximal left ideal, it follows that $I=R^{2} \supseteq \mathfrak{d}$, a contradiction. Next let $\mathfrak{b} \subseteq I$, then $\mathfrak{d}=\mathfrak{b} \subseteq I \subseteq$, i.e. $\mathfrak{D} \subseteq I \mathfrak{D}$, hence $\mathfrak{d}=I \mathfrak{D}$. In either case, we have $\mathfrak{d}=I \mathrm{D}$.

Theorem 2. Let R be a non-idempotent M-ring, and let I be any maximal left ideal of R, then for any ideal \mathfrak{a}, s.t. $\mathfrak{a} \subseteq \mathfrak{b}, I \mathfrak{a}=\mathfrak{a}$. The similar results hold for right ideals.

Proof. By Lemmas 1 and $3, I \mathfrak{a}=I \cdot \mathfrak{b a}=I \mathfrak{b} \cdot \mathfrak{a}=\mathfrak{d} \mathfrak{a}=\mathfrak{a}$.
Theorem 3. Let R be a non-idempotent M-ring, and let $\mathfrak{d} \neq\{0\}$, then l-ann $\mathfrak{d}=r$-ann $\mathfrak{d}=\{0\}$ and $\mathfrak{\delta} \subseteq R$, i.e. \mathfrak{d} is essential as left R module and also as a right R-module.

Proof. Let \mathfrak{n} denote l-ann $\mathfrak{d}=\{x \in R \mid x \mathfrak{b}=\{0\}\}$. If $\mathfrak{n}=\mathfrak{b}_{\alpha}^{j}$ for some ordinal α and some positive integer $j,\{0\}=\mathfrak{n d}=\mathfrak{D}_{\alpha}^{j} \mathfrak{D}=\mathfrak{D}$, a contradiction; if $\mathfrak{n}=\mathfrak{b}$, then $\{0\}=\mathfrak{n d}=\mathfrak{D b}=\mathfrak{b}$, also a contradiction. If $\mathfrak{n}<\mathfrak{d}$, then by Lemma $1\{0\}=\mathfrak{n d}=\mathfrak{n}$. Similarly r-ann $\mathfrak{\delta}=\{0\}$.

Proposition 4. Let R be a non-idempotent M-ring, and let \mathfrak{p} be any prime ideal of R, s.t. $\mathfrak{p}<\mathfrak{a}$, then $\mathfrak{p}<\mathfrak{a}^{n}$ for any positive integer n.

Theorem 4. Let R be a non-idempotent M-ring, and let b be the unique maximal idemp•tent ideal of R. If $\mathfrak{a}, \mathfrak{b}$ are ideals of R, s.t. $\mathfrak{a}<\mathfrak{b} \subseteq \mathfrak{b}$, then there exist ideals of $R \mathfrak{c}, \mathfrak{c}^{\prime}$, both contained in \mathfrak{b}, s.t. $\mathfrak{a}=\mathfrak{b c}$ $=c^{\prime} \mathfrak{b}$.

Proof. It's obvious by Theorem 5 (i) [5] and Lemma 1.
Example. The following is an example of a non-idempotent M ring with $\mathfrak{d} \neq\{0\}$. Let S be a matrix-ring of a countable degree, generated by countable matrix units $e_{i, j}(i, j=1,2, \cdots)$ over the rational field. Then S is a simple ring, and $S^{2}=S$, but does not have an identity. Let $A=p Z_{p}$, where p is a prime, then ideals of A are $p^{i} Z_{p}$ ($i=1,2, \cdots$) only. Now we define a ring R as follows: Let $R=(A, S)$, and $(a, s)=\left(\alpha^{\prime}, s^{\prime}\right), a, a^{\prime} \in A, s, s^{\prime} \in S$, if and only if $a=\alpha^{\prime}$ and $s=s^{\prime}$; $(a, s)+\left(\alpha^{\prime}, s^{\prime}\right)=\left(a+\alpha^{\prime}, s+s^{\prime}\right)$, and $(a, s)\left(a^{\prime}, s^{\prime}\right)=\left(a a^{\prime}, a s^{\prime}+s a^{\prime}+s s^{\prime}\right)$. Then R is a ring, and $(0, S)$ is an ideal of R, s.t. $(0, S)^{2}=(0, S)$. Now, let J_{i} denote $p^{i} Z_{p}$, then $\left(J_{i}, S\right) i \geq 1$ are ideals of R. Let $I=\left(I_{1}, I_{2}\right)^{\prime}$ be any ideal of R, where "'" means a subdirect sum, and $I_{1} \subseteq A, I_{2} \subseteq S$, both are projections of I respectively into A and S, and I_{1} is an ideal of A, so $I_{1}=J_{i}$ for some positive integer i. We assume that $I \neq\{0\}$, then $I \cap S$ is an ideal of S, therefore $I \cap S=S$ or $I \cap S=\{0\}$, since S is a simple ring. In case $I \cap S=S, I=\left(I_{1}, I_{2}\right)^{\prime} \supseteq(0, S)$, therefore $I_{2}=S$, hence $I=\left(J_{i}, S\right)^{\prime} \supseteq(0, S)$ for some integer $i>0$, so $I=\left(J_{i}, S\right)$. In case $I \cap S$ $=\{0\}, I$ can not contain any element $(0, x), x \neq 0$. So, let $\left(a_{1}, s_{1}\right) a_{1} \neq 0$
be any element of I, then $I \ni\left(a_{1}, s_{1}\right)(0, t)=\left(0, a_{1} t+s_{1} t\right)$ for any $t \in S$, therefore $a_{1} t=-s_{1} t$ for any $t \in S$. We set $-s_{1}=\left(\beta_{i j}\right)$, and $t=e_{p q}$, then $a_{1}=\beta_{p p}$ for any p, a contradiction. Since $R^{n}=\left(A^{n}, S\right), \mathfrak{D}_{1}=\bigcap_{n=1}^{\infty} R^{n}$ $=\bigcap_{n=1}^{\infty}\left(A^{n}, S\right)=(0, S) \neq 0, \grave{\complement}_{1}^{2}=\mathfrak{D}_{1}=\mathfrak{D} \neq\{0\}$.
2. Left Noetherian non-idempotent M-ring. Proposition 5. Let R be a left Noetherian non-idempotent M-ring, and \mathfrak{p} be a prime ideal, s.t. $\mathfrak{p}<N$ then $\mathfrak{p}=\{0\}$.

Proof. By Proposition 1 [5] $\mathfrak{p}=N \mathfrak{p}$, so by Nakayama's lemma $\mathfrak{p}=\{0\}$.

Theorem 5. Let R be a left Noetherian non-idempotent M-ring, and also a semi-prime ring. Suppose $N<\mathfrak{d}$, then for any maximal left ideal I of R, l-ann $(I)=\{0\}$, i.e. I is a faithful left R-module.

Proof. Let I be a maximal left ideal of R, and set $\mathfrak{a}=l$-ann (I) $=\{x \in R \mid x I=\{0\}\}$. Suppose $\mathfrak{a} \nsubseteq \mathfrak{d}$, then $\mathfrak{a}=\mathfrak{D}_{\alpha}^{\rho}$ for some ordinal α and some positive integer ρ, by Theorem 5 (i) [5]. Since R is left Noetherian, $I=R u_{1}+\cdots+R u_{r}+Z u_{1}+\cdots+Z u_{r}, \quad u_{i} \neq 0, i=1,2, \cdots, r$, where Z denotes the ring of integers. Therefore $\{0\}=\mathfrak{a} I=\mathfrak{a} R u_{1}+\cdots+\mathfrak{a} R u_{r}$ $+\mathfrak{a} u_{1}+\cdots+\mathfrak{a} u_{r}=\mathfrak{a} u_{1}+\cdots+\mathfrak{a} u_{r}$, since $\mathfrak{a} R=\mathfrak{D}_{\alpha}^{\rho} R=\mathfrak{D}_{\alpha}^{\rho}=\mathfrak{a}$. If every u_{i}, i $=1,2, \cdots, r$ belong to R^{2}, then $I \subseteq R^{2}$, therefore by the maximality of $I I=R^{2}$, hence $\{0\}=\mathfrak{a} I=\mathfrak{D}_{\alpha}^{\rho} R^{2}=\mathfrak{D}_{\alpha}^{\rho}=\mathfrak{a}$, i.e. $\mathfrak{a} \subseteq \mathfrak{d}$, a contradiction. Therefore, some $u_{i} \notin R^{2}$. Then $\{0\}=\mathfrak{a} u_{i}=\complement_{\alpha}^{\rho} u_{i} \supseteq \delta u_{i}$, i.e. $\mathfrak{D} u_{i}=\{0\}$, by Theorem $3 u_{i}=0$, a contradiction. Thus we conclude that $\mathfrak{a} \subseteq \mathfrak{d}$, hence by Theorem $2 I \mathfrak{a}=\mathfrak{a}$, therefore $\mathfrak{a}^{2}=I \mathfrak{a} \cdot I \mathfrak{a}=I \cdot \mathfrak{a} I \cdot \mathfrak{a}=\{0\}$. Since R is a semi-prime ring, $\mathfrak{a}=\{0\}$.

Proposition 6. Let R be a left Noetherian non-idempotent M-ring, and let $N<\mathfrak{b}$. Assume that \mathfrak{a} is an ideal of R, properly contained in \mathfrak{b}. Let \mathfrak{p} be maximal in the set of ideals of R, s.t. $\mathfrak{a} \subseteq \mathfrak{p}<\mathfrak{d}$, then \mathfrak{p} is a prime ideal of R.

Proof. We assume that \mathfrak{p} is not a prime ideal of R, then there exist ideals of $R \mathfrak{a}, \mathfrak{b}$, s.t. $\mathfrak{a b} \equiv 0, \mathfrak{a} \not \equiv 0, \mathfrak{b} \not \equiv 0(\bmod \mathfrak{p})$. We set $(\mathfrak{a}, \mathfrak{p})=\mathfrak{a}_{1}$, $(\mathfrak{b}, \mathfrak{p})=\mathfrak{b}_{1}$, then $\mathfrak{a}_{1} \mathfrak{b}_{1}=(\mathfrak{a}, \mathfrak{p})(\mathfrak{b}, \mathfrak{p}) \equiv 0(\bmod \mathfrak{p})$, and also $\mathfrak{p}<\mathfrak{a}_{1}, \mathfrak{p}<\mathfrak{b}_{1} ;$ of course $\mathfrak{a} \subseteq \mathfrak{a}_{1}$, therefore by the maximality of $\mathfrak{p} \mathfrak{a}_{1} \nsubseteq \mathfrak{d}$, and similarly $\mathfrak{b}_{1} \not \subset \mathfrak{d}$. Hence by Theorem 5 (i) [5], $\mathfrak{a}=\mathfrak{D}_{\alpha}^{i}>\mathfrak{d}, \mathfrak{b}_{1}=\mathfrak{D}_{\beta}^{j}>\mathfrak{b}$ for some ordinals α, β and some positive integers i, j. Therefore $\mathfrak{a}_{1} \mathfrak{b}_{1} \supseteq \mathfrak{D} \delta=\mathfrak{b}>\mathfrak{p}$, hence $\mathfrak{a}_{1} \mathfrak{b}_{1} \not \equiv 0(\bmod \mathfrak{p})$, a contradiction. Thus \mathfrak{p} is a prime ideal of R.

Proposition 7. Under the same assumptions as Proposition 6, let \mathfrak{p} be maximal in the set of ideals of R, s.t. $\mathfrak{a \subseteq p}<\mathfrak{d}$, and let I be any left ideal of R s.t. $\mathfrak{p}<I \subseteq \mathfrak{b}$. Then the following statements hold:
i) $I R=\emptyset$
ii) $I^{2}=\emptyset I$
iii) $\mathfrak{b}=I \mathfrak{b}$
iv) $\quad I \mathfrak{p}=\mathfrak{p}$
v) I^{2} is an idempotent left ideal of R
vi) $\mathfrak{p} \subseteq I^{n}$ for any positive integer n.

Proof. i) Since $\mathfrak{p}<I \subseteq \mathfrak{d}, \mathfrak{p}=\mathfrak{p} R \subseteq I R \subseteq \mathfrak{d} R=\mathfrak{d}$. By the maximality of $\mathfrak{p}, \mathfrak{p}=I R$ or $I R=\mathfrak{b}$. But the former does not occur.
ii) Using i) $I^{2} \supseteq I \cdot R I=I R \cdot I=\emptyset I \supseteq I^{2}$, therefore $I^{2}=\emptyset I$.
iii) Using the results i), ii), $I \mathfrak{D} \equiv I \cdot I R=I^{2} \cdot R=\mathfrak{d} I \cdot R=\mathfrak{d} \cdot I R=\mathfrak{d} \mathfrak{d}=\mathfrak{D}$.
iv) By iii) $\mathfrak{p} \supseteq I_{\mathfrak{p}}=I \cdot \mathfrak{d p}=I \mathfrak{D} \cdot \mathfrak{p}=\mathfrak{d} \mathfrak{p}=\mathfrak{p}$, therefore $I \mathfrak{p}=\mathfrak{p}$.
v) By the results ii), iii), $I^{3}=I \cdot I^{2}=I \cdot \emptyset I=I \triangleright \cdot I=\oslash I=I^{2}$, i.e. $I^{3}=I^{2}$, therefore I^{2} is an idempotent left ideal of R.
vi) By iv) $\mathfrak{p}=I \mathfrak{p} \subseteq I \cdot I=I^{2}$, so $\mathfrak{p} \subseteq I^{n}$ for any positive integer n.

References

[1] K. Asano: The Theory of Rings and Ideals, Kyoritsu-Shuppan (1949) (in Japanese).
[2] T. Nakayama and G. Azumaya: Algebra. vol. 2, Iwanami (1954) (in Japanese).
[3] S. Mori: Über Idealtheorie der Multiplikationsringe. Jour. Sci. Hiroshima Univ., ser. A, 19 (3) , 429-437 (1956).
[4] -: Struktur der Multiplikationsringe. Ibid., 16, 1-11 (1952).
[5] T. Ukegawa: Some properties of non-commutative multiplication rings. Proc. Japan Acad., 54A, 279-284 (1978).

