31. On the Unique Maximal Idempotent Ideals of Non-Idempotent Multiplication Rings

By Takasaburo UKEGAWA
Faculty of General Education, Kobe University
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1979)

In the preceding paper [5], we have defined multiplication rings, shortly M-rings, as rings s.t. for any ideals α , β , with $\alpha < \beta$, there exist ideals c, c', s.t. $\alpha = bc = c'b$; here "<" means a proper inclusion. An Mring is called non-idempotent, if $R > R^2$. We have proved that the unique maximal idempotent ideal δ of a non-idempotent M-ring can be obtained as an intersection of some ideal sequence $\{\delta_{\alpha}\}_{\wedge}$, where δ_{α} are defined inductively ([5], Theorem 5): $\delta = \bigcap_{\alpha \in \Lambda} \delta_{\alpha}$. In § 1, we shall prove that b is an essential submodule of R, both as a left and also as a right R-module, and at the end of the section we shall give an example of a non-idempotent M-ring with $b \neq \{0\}$. If moreover R is left Noetherian, and let N denote the Jacobson radical of R, then by Theorem 5 (i) [5], $N\subseteq \emptyset$ or $N=\emptyset$ for some ordinal α and some positive integer j. If $N=\emptyset$ or $N = b_a^j$, then by Theorem 5 (ii) [5] and Nakayama's lemma $b = \{0\}$, so we have to consider the case $N < \delta$ only; so in §2 we consider left Noetherian non-idempotent M-rings, and prove that any ideal, which is maximal in the set of ideals properly contained in b, is a prime ideal of R.

1. Non-idempotent M-rings. Lemma 1. Let R be a non-idempotent M-ring, and let α be any ideal, s.t. $\alpha \subseteq \delta$ then $\delta \alpha = \alpha \delta = \alpha$; furthermore for an ideal δ' s.t. $\delta \subseteq \delta'$, $\alpha \delta' = \delta' \alpha = \alpha$.

Proof. If $\alpha = b$, there is nothing to prove. If $\alpha < b$, then $\alpha = bb = b'b$ for some ideals b, b', therefore $\alpha b = b'b \cdot b = b'b = a$. Similarly $b\alpha = a$.

Lemma 2. Let R be a non-idempotent M-ring, and let N < b, then $N = \bigcap_{I \in \mathbb{R}} I = \bigcap_{J \in \mathbb{R}} J$, where \mathfrak{M} and \mathfrak{N} denote the set of maximal left ideals of R, and all maximal right ideals of R respectively.

Proof. In general, $NR \subseteq \bigcap_{I \in \mathfrak{M}} I \subseteq N$, and $\bigcap_{I \in \mathfrak{M}} I$ is an ideal of R. By Lemma 1 N = NR, hence equality holds.

Theorem 1. Let R be a non-idempotent M-ring. If $R \neq N$, then $N = \bigcap_{I \in \mathfrak{M}} I = \bigcap_{J \in \mathfrak{R}} J$, where \mathfrak{M} , \mathfrak{N} is the same as Lemma 2.

Proof. By Proposition 4 [5], N=R or $N\subseteq \emptyset$. If $N=\emptyset$, then $\emptyset = \emptyset R = NR \subseteq \bigcap_{I \in \mathfrak{M}} I \subseteq \emptyset$, therefore $\emptyset = N = \bigcap_{I \in \mathfrak{M}} I$. If $N < \emptyset$, the results follow by Lemma 2.

Lemma 3. Let R be a non-idempotent M-ring, and let I be any maximal left ideal of R, then Ib=b. The similar results hold for right

ideals.

Proof. Assume that $b \not\subseteq I$. If $IR \not\subseteq I$, then (IR, I) = R since I is a maximal left ideal of R, therefore b = Rb = (IR, I)b = (Ib, Ib) = Ib, i.e. Ib = b. If $IR \subseteq I$, then I is an ideal, hence $I \subseteq b$ or $I = b^{\rho}_{\alpha}$ for some ordinal α and some positive integer ρ , since I is a maximal left ideal, it follows that $I = R^2 \supseteq b$, a contradiction. Next let $b \subseteq I$, then $b = bb \subseteq Ib$, i.e. $b \subseteq Ib$, hence b = Ib. In either case, we have b = Ib.

Theorem 2. Let R be a non-idempotent M-ring, and let I be any maximal left ideal of R, then for any ideal α , s.t. $\alpha \subseteq \delta$, $I\alpha = \alpha$. The similar results hold for right ideals.

Proof. By Lemmas 1 and 3, $I\alpha = I \cdot b\alpha = Ib \cdot \alpha = b\alpha = \alpha$.

Theorem 3. Let R be a non-idempotent M-ring, and let $b \neq \{0\}$, then l-ann b = r-ann $b = \{0\}$ and $b \subseteq R$, i.e. b is essential as left R-module and also as a right R-module.

Proof. Let \mathfrak{n} denote l-ann $\mathfrak{d} = \{x \in R \mid x\mathfrak{d} = \{0\}\}$. If $\mathfrak{n} = \mathfrak{d}_{\alpha}^{j}$ for some ordinal α and some positive integer j, $\{0\} = \mathfrak{n}\mathfrak{d} = \mathfrak{d}_{\alpha}^{j}\mathfrak{d} = \mathfrak{d}$, a contradiction; if $\mathfrak{n} = \mathfrak{d}$, then $\{0\} = \mathfrak{n}\mathfrak{d} = \mathfrak{d}\mathfrak{d} = \mathfrak{d}$, also a contradiction. If $\mathfrak{n} < \mathfrak{d}$, then by Lemma 1 $\{0\} = \mathfrak{n}\mathfrak{d} = \mathfrak{n}$. Similarly r-ann $\mathfrak{d} = \{0\}$.

Proposition 4. Let R be a non-idempotent M-ring, and let \mathfrak{p} be any prime ideal of R, s.t. $\mathfrak{p} < \mathfrak{a}$, then $\mathfrak{p} < \mathfrak{a}^n$ for any positive integer n.

Theorem 4. Let R be a non-idempotent M-ring, and let b be the unique maximal idempotent ideal of R. If a, b are ideals of R, s.t. $a < b \subseteq b$, then there exist ideals of R c, c', both contained in b, s.t. a = b c = c'b.

Proof. It's obvious by Theorem 5 (i) [5] and Lemma 1.

Example. The following is an example of a non-idempotent Mring with $b \neq \{0\}$. Let S be a matrix-ring of a countable degree, generated by countable matrix units $e_{i,j}$ $(i, j=1, 2, \cdots)$ over the rational Then S is a simple ring, and $S^2=S$, but does not have an field. identity. Let $A = pZ_p$, where p is a prime, then ideals of A are p^iZ_p $(i=1,2,\cdots)$ only. Now we define a ring R as follows: Let R=(A,S), and (a, s) = (a', s'), $a, a' \in A$, $s, s' \in S$, if and only if a = a' and s = s'; (a, s) + (a', s') = (a + a', s + s'), and (a, s)(a', s') = (aa', as' + sa' + ss'). Then R is a ring, and (0, S) is an ideal of R, s.t. $(0, S)^2 = (0, S)$. Now, let J_i denote $p^i \mathbb{Z}_p$, then (J_i, S) $i \ge 1$ are ideals of R. Let $I = (I_1, I_2)'$ be any ideal of R, where "'" means a subdirect sum, and $I_1 \subseteq A$, $I_2 \subseteq S$, both are projections of I respectively into A and S, and I_1 is an ideal of A, so $I_1=J_i$ for some positive integer i. We assume that $I\neq\{0\}$, then $I \cap S$ is an ideal of S, therefore $I \cap S = S$ or $I \cap S = \{0\}$, since S is a simple ring. In case $I \cap S = S$, $I = (I_1, I_2)' \supseteq (0, S)$, therefore $I_2 = S$, hence $I=(J_i,S)'\supseteq(0,S)$ for some integer i>0, so $I=(J_i,S)$. In case $I\cap S$ = $\{0\}$, I can not contain any element (0, x), $x \neq 0$. So, let (a_1, s_1) $a_1 \neq 0$

be any element of I, then $I \ni (a_1, s_1)(0, t) = (0, a_1t + s_1t)$ for any $t \in S$, therefore $a_1t = -s_1t$ for any $t \in S$. We set $-s_1 = (\beta_{ij})$, and $t = e_{pq}$, then $a_1 = \beta_{pp}$ for any p, a contradiction. Since $R^n = (A^n, S)$, $b_1 = \bigcap_{n=1}^{\infty} R^n = \bigcap_{n=1}^{\infty} (A^n, S) = (0, S) \neq 0$, $b_1^2 = b_1 = b \neq \{0\}$.

2. Left Noetherian non-idempotent M-ring. Proposition 5. Let R be a left Noetherian non-idempotent M-ring, and \mathfrak{p} be a prime ideal, s.t. $\mathfrak{p} < N$ then $\mathfrak{p} = \{0\}$.

Proof. By Proposition 1 [5] $\mathfrak{p}=N\mathfrak{p}$, so by Nakayama's lemma $\mathfrak{p}=\{0\}$.

Theorem 5. Let R be a left Noetherian non-idempotent M-ring, and also a semi-prime ring. Suppose $N < \mathfrak{h}$, then for any maximal left ideal I of R, l-ann $(I) = \{0\}$, i.e. I is a faithful left R-module.

Proof. Let I be a maximal left ideal of R, and set $\alpha=l$ -ann $(I)=\{x\in R\mid xI=\{0\}\}$. Suppose $\alpha\not\subseteq \emptyset$, then $\alpha=\emptyset_a^r$ for some ordinal α and some positive integer ρ , by Theorem 5 (i) [5]. Since R is left Noetherian, $I=Ru_1+\cdots+Ru_r+Zu_1+\cdots+Zu_r$, $u_i\neq 0$, $i=1,2,\cdots,r$, where Z denotes the ring of integers. Therefore $\{0\}=\alpha I=\alpha Ru_1+\cdots+\alpha Ru_r+\alpha u_1+\cdots+\alpha u_r=\alpha u_1+\cdots+\alpha u_r$, since $\alpha R=\emptyset_a^rR=\emptyset_a^r=\alpha$. If every u_i , $i=1,2,\cdots,r$ belong to R^2 , then $I\subseteq R^2$, therefore by the maximality of I $I=R^2$, hence $\{0\}=\alpha I=\emptyset_a^rR^2=\emptyset_a^r=\alpha$, i.e. $\alpha\subseteq \emptyset$, a contradiction. Therefore, some $u_i\not\in R^2$. Then $\{0\}=\alpha u_i=\emptyset_a^ru_i\supseteq \emptyset u_i$, i.e. $\emptyset u_i=\{0\}$, by Theorem 3 $u_i=0$, a contradiction. Thus we conclude that $\alpha\subseteq \emptyset$, hence by Theorem 2 $I\alpha=\alpha$, therefore $\alpha^2=I\alpha\cdot I\alpha=I\cdot\alpha I\cdot\alpha=\{0\}$. Since R is a semi-prime ring, $\alpha=\{0\}$.

Proposition 6. Let R be a left Noetherian non-idempotent M-ring, and let $N < \mathfrak{b}$. Assume that \mathfrak{a} is an ideal of R, properly contained in \mathfrak{b} . Let \mathfrak{p} be maximal in the set of ideals of R, s.t. $\mathfrak{a} \subseteq \mathfrak{p} < \mathfrak{b}$, then \mathfrak{p} is a prime ideal of R.

Proof. We assume that \mathfrak{p} is not a prime ideal of R, then there exist ideals of R \mathfrak{a} , \mathfrak{b} , s.t. $\mathfrak{a}\mathfrak{b} \equiv 0$, $\mathfrak{a} \not\equiv 0$, $\mathfrak{b} \not\equiv 0 \pmod{\mathfrak{p}}$. We set $(\mathfrak{a}, \mathfrak{p}) = \mathfrak{a}_1$, $(\mathfrak{b}, \mathfrak{p}) = \mathfrak{b}_1$, then $\mathfrak{a}_1\mathfrak{b}_1 = (\mathfrak{a}, \mathfrak{p})(\mathfrak{b}, \mathfrak{p}) \equiv 0 \pmod{\mathfrak{p}}$, and also $\mathfrak{p} < \mathfrak{a}_1$, $\mathfrak{p} < \mathfrak{b}_1$; of course $\mathfrak{a} \subseteq \mathfrak{a}_1$, therefore by the maximality of \mathfrak{p} $\mathfrak{a}_1 \not\subseteq \mathfrak{b}$, and similarly $\mathfrak{b}_1 \not\subseteq \mathfrak{d}$. Hence by Theorem 5 (i) [5], $\mathfrak{a} = \mathfrak{b}_a^i > \mathfrak{d}$, $\mathfrak{b}_1 = \mathfrak{b}_b^j > \mathfrak{d}$ for some ordinals \mathfrak{a} , \mathfrak{p} and some positive integers i, j. Therefore $\mathfrak{a}_1\mathfrak{b}_1 \supseteq \mathfrak{d}\mathfrak{b} = \mathfrak{b} > \mathfrak{p}$, hence $\mathfrak{a}_1\mathfrak{b}_1 \not\equiv 0 \pmod{\mathfrak{p}}$, a contradiction. Thus \mathfrak{p} is a prime ideal of R.

Proposition 7. Under the same assumptions as Proposition 6, let \mathfrak{p} be maximal in the set of ideals of R, s.t. $\mathfrak{a} \subseteq \mathfrak{p} < \mathfrak{h}$, and let I be any left ideal of R s.t. $\mathfrak{p} < I \subseteq \mathfrak{h}$. Then the following statements hold:

- i) $IR = \emptyset$
- ii) $I^2 = bI$
- iii) b = Ib
- iv) $I\mathfrak{p} = \mathfrak{p}$
- v) I^2 is an idempotent left ideal of R

- vi) $\mathfrak{p}\subseteq I^n$ for any positive integer n.
- **Proof.** i) Since $\mathfrak{p} < I \subseteq \mathfrak{d}$, $\mathfrak{p} = \mathfrak{p} R \subseteq IR \subseteq \mathfrak{d} R = \mathfrak{d}$. By the maximality of \mathfrak{p} , $\mathfrak{p} = IR$ or $IR = \mathfrak{d}$. But the former does not occur.
 - ii) Using i) $I^2 \supseteq I \cdot RI = IR \cdot I = bI \supseteq I^2$, therefore $I^2 = bI$.
 - iii) Using the results i), ii), $Ib \equiv I \cdot IR = I^2 \cdot R = bI \cdot R = b \cdot IR = bb = b$.
 - iv) By iii) $\mathfrak{p} \supseteq I\mathfrak{p} = I \cdot \mathfrak{b}\mathfrak{p} = I\mathfrak{d} \cdot \mathfrak{p} = \mathfrak{b}\mathfrak{p} = \mathfrak{p}$, therefore $I\mathfrak{p} = \mathfrak{p}$.
- v) By the results ii), iii), $I^3 = I \cdot I^2 = I \cdot bI = Ib \cdot I = bI = I^2$, i.e. $I^3 = I^2$, therefore I^2 is an idempotent left ideal of R.
 - vi) By iv) $\mathfrak{p} = I\mathfrak{p} \subseteq I \cdot I = I^2$, so $\mathfrak{p} \subseteq I^n$ for any positive integer n.

References

- [1] K. Asano: The Theory of Rings and Ideals, Kyoritsu-Shuppan (1949) (in Japanese).
- [2] T. Nakayama and G. Azumaya: Algebra. vol. 2, Iwanami (1954) (in Japanese).
- [3] S. Mori: Über Idealtheorie der Multiplikationsringe. Jour. Sci. Hiroshima Univ., ser. A, 19(3), 429-437 (1956).
- [4] -: Struktur der Multiplikationsringe. Ibid., 16, 1-11 (1952).
- [5] T. Ukegawa: Some properties of non-commutative multiplication rings. Proc. Japan Acad., 54A, 279-284 (1978).