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The Eigenvalues of the Laplacian and
Perturbation of Boundary Condition

By Shin OZAWA
Department of Mathematics, University of Tokyo

(Communicated by K.6saku YOSDA, M. J. A., April 12, 1979). Introduction. Let /2 be a bounded domain in R with C
boundary -. Consider eigenvalue problem for the Laplacian with the
third boundary condition;
( 1 ) (--z--)u(x) O, x e 9,

u (x) + p(x)u(x) O, x e(2)

where , denotes the exterior unit normal vector at , and p(x) is a func-
tion in the HSlder space C/(-) (01).

Let _2.__ be the eigenvalues of the problem (l), (2), then
these are functionals of p.

Our main result is
Theorem 1. There is a residual subset B of the Banach space

C+(-) such that for any p e B all the eigenspaces of the problem (1),
(2), are of dimension one.

We call a subset B in C+(.) residual if it is a countable intersec-
tion of open dense subsets o C+(’).

In Fujiwara-Tanikawa-Yukita [2], they studied the eigenvalue
problem of the Laplacian with Dirichlet condition at the boundary
Their result is as ollows

(A) If the boundary " of domain is in residual subset of the
Hilbert manifold of the totality o the boundary, then all eigenvalues
are simple eigenvalue.

Their proof heavily depends on the abstract transversality theo-
rem of Banach manifold given by Uhlenbeck [3]. Also they used
Hadamard’s variational formula and showed that the theorem of
Uhlenbeck is applicable to their proof of (A).

In our case too, we shall use a variational formula of (--/+M)-,
M being large, under the perturbation of p(x). This will be proved in
Theorem 2.

1. Variational formula of the Green kernel under the perturo
bation of boundary condition. Let m be a fixed number satisfying
m2:, where 2 is the smallest eigenvalue of --z/ with the boundary
condition (2),. Let G(x, y) be the Green kernel of-z/-m with the
condition (2). We fix (x) e C+(-). Then we have the following
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Theorem 2. For fixed x, y [2 snch that xy, we have

3G(x, y)--_ G(x, z)G(y, z)(z)daz,

vhere we put
G(x, y)--lira -(G/,(x, y)-G(x, y)),

and da denotes the surface element of .
Proof. We have

e-(G/(x, y)-G(x, y))

:- I" {G/(x, z)(-zl-m)G(y, z)
J

-G,(y, z)(-z1,-m)G,/(x, z)}dz

:_.[ G,+(x, z)G,(y, z)x(z)da.

For fixed x e tg, we can prove that G,/(x, z)-G,(x, z) converges to zero
uniformly in z e 9. The proof is the same as. in Fujiwara-Ozawa [1].

2. Proof of Theorem 1. Let
’/(),

and

ll {u e L(t2) u(x) l dx= l, u real}
then H orms a separable Hilbert manifold. The eigenvalue problem
(1), (2), is equivalent to the equation (I-(-m)G,)u(x)=O, where G,
denotes the green operator defined by

Gou(x)= G(x, y)u(y)dy.

We define the iollowing map:
q X HX RL(9)

(p, u, .)q(p, u, .) (I-- (.- m)G,)u.
Let , denote the map defined by

q, :// R--L(/2)

(u, )--(u, )=(p, u, ).
Then we have

Lemma 1.
index O.

Lemma 2.

The mapping p is a smooth Fredholm mapping of

The following two statements are equivalent:
(2.2) 0 is a regular value of
(2.3) The eigenvalue of the equation (1), (2)p are all simple.
We omit the proof o Lemmas I and 2. See Uhlenbeck [3]. Next

we have
Proposition 1. 0 e L2(tg) is a regular value of the mapping
Proof. Assume (p, u, ) e -(0). We have to show that the image
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of 3(p, u, ,) coincides with L(9), where 3(p, u, 2) is. the differential of
at (, u, ). We have
((p, u, ))(, u, )=.Gu+(I-(,t-m)G)(u+(,-m)(G)u.

The condition that u lies. in the tangent space of H at u is equivalent
to

(u(x)u(x)dx=O.

We assume that v is orthogonal to the image of (p, u, 2). Then we
have

+ (,-- m)..[ (G,)u(x)v(x)dx=O,
or any ((p, u, ,)e T(,,u,), where T(,,,) denotes the tangent space to
XIIR at (p, u, 2). By the choice of m, we have 2--m#0, then (2.4)
is equivalent to the following system of equations"

(2.5) (Geu)(x)v(x)dx=O,

(2.6) (I--(2--m)G)u(x)v(x)dx=O,

(2.7) I (G)u(x)v(x)dx= O.
J

Since (I--(-m)G,) is a bounded symmetric operator in L(2), (2.6)
implies that (I-- (-- m)G,)v(x) 0. Then by the regularity theorem of
elliptic boundary value problem, we have v(x)e /(9). We know by
(2.7) and Theorem 2 that

( G(x, z)v(x)dx)( G(y, z)u(y)dy) O,

or every z e 7. Since u(x), v(x) e Ker (I (2 m)G,) the above equa-
tion turns out to be u(z)v(z)--O on ’. Hence there is an open subset
of such that u(z)=0 or v(z)=0 on holds,. Assume that u(z)=0 on

(o, then 3u (z)=0 on because of (2),. By the uniqueness theorem of

Holmgren and the real analyticity of the solution in the interior o 9,
we obtain u(x)--O in/2 which contradicts the act u e//. Thus v--0
on (o. Just as, above discussions, we can prove v--0 in tO. Hence the
image of (p, u, 2) is dense in L(9). On the other hand, the image

of. (I-(,-m)G) is. closed and has finite codimension in L(tg). There-
fore Proposition 1 is proved.

By Lemmas 1, 2, Proposition I and Uhlenbeck’s transversality
theorem in [3], we get Theorem 1.
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