25. On Zariski Problem

By Takao FUJITA

Department of Mathematics, College of General Education, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1979)

In this note we generalize a result of Zariski [8, § 7]. As an application, using the theory of Miyanishi [5], [6], we prove the following

Theorem. Let S be a surface defined over a field k of characteristic zero such that $S \times A^1 \cong A^3$. Then $S \cong A^2$.

Namely the so-called Zariski problem is solved in the affirmative way. Our method of proof will work also in positive characteristic cases provided that there is a sufficiently powerful analogue of the theory of Iitaka [1], [2]. It should be emphasized that the theory of Miyanishi plays a very important role in our proof.

§ 1. Zariski decomposition of pseudo effective line bundles. Let S be a complete non-singular surface defined over an algebraically closed field k of any characteristic. *Prime divisor* means an irreducible reduced curve on S.

(1.1) A linear combination of prime divisors with coefficients in the rational number field Q is called a *Q*-divisor. A *Q*-divisor is said to be *effective* if each coefficient is non-negative.

(1.2) An element of $Pic(S) \otimes Q$ is called a *Q*-line bundle. Any *Q*-divisor *D* defines naturally a *Q*-line bundle, which is denoted by *D* by abuse of notation. For any *Q*-line bundles F_1 and F_2 , we define the intersection number $F_1F_2 \in Q$ in the obvious way.

(1.3) A Q-line bundle H is said to be *semi-positive* if $HC \ge 0$ for any prime divisor C. Then, obviously, $HE \ge 0$ for any effective Q-divisor E.

(1.4) Lemma. Let H be a semipositive Q-line bundle and let E be an effective Q-divisor. If $(H+E)C_i \ge 0$ for each prime component C_i of E, then (H+E) is semipositive.

Proof is easy.

(1.5) A Q-line bundle L is said to be pseudo effective if $LH \ge 0$ for any semipositive Q-line bundle H. Clearly any effective Q-divisor is pseudo effective.

(1.6) Let C_1, \dots, C_q be prime divisors. By $V(C_1, \dots, C_q)$ we denote the **Q**-vector space of **Q**-divisors generated by C_1, \dots, C_q . $I(C_1, \dots, C_q)$ denotes the quadratic form on $V(C_1, \dots, C_q)$ defined by the self intersection number.

Zariski Problem

No. 3]

(1.7) Lemma. Let C_1, \dots, C_q be prime divisors such that $I(C_1, \dots, C_q)$ is negative definite. Let $X \in V(C_1, \dots, C_q)$ and suppose that $XC_i \leq 0$ for any $i=1, \dots, q$. Then X is effective.

For a proof, see Zariski [8, p. 588].

(1.8) Lemma. Let C_1, \dots, C_q and X be as above. Let L be a pseudo effective Q-line bundle such that $(L-X)C_i \leq 0$ for any $i=1, \dots, q$. Then L-X is pseudo effective.

Proof. Let H be any semipositive Q-line bundle. Since the matrix (C_iC_j) is non-singular, we have $Y \in V(C_1, \dots, C_q)$ such that $YC_i = -HC_i$ for $i=1, \dots, q$. $YC_i \leq 0$ because H is semipositive. So Y is effective by (1.7). Hence $(L-X)C_i \leq 0$ implies $(L-X)Y \leq 0$. On the other hand, $(H+Y)C_i=0$ implies that (H+Y)X=0 and that H+Y is semipositive by (1.4). So $(H+Y)L \geq 0$. Combining these inequalities we obtain $(L-X)H = LH + XY \geq XY - LY \geq 0$. Q.E.D.

(1.9) Lemma. Let C_1, \dots, C_q be prime divisors. Suppose that $I(C_1, \dots, C_q)$ is negative semidefinite of type (0, r) with r < q. Suppose in addition that $I(C_1, \dots, C_r)$ is negative definite. Then, for each j > r, there is an effective **Q**-divisor $X_j \in V(C_1, \dots, C_r)$ such that $(C_j + X_j)C_i = 0$ for any $i = 1, \dots, q$.

For a proof, see Zariski [8, p. 589].

(1.10) Lemma. Let C_1, \dots, C_q be prime divisors and let L be a pseudo effective Q-line bundle such that $LC_i \leq 0$ for any i and $LC_j < 0$ for any j > r. Suppose that $I(C_1, \dots, C_r)$ is negative definite. Then so is $I(C_1, \dots, C_q)$.

Proof. Assume that $I(C_1, \dots, C_q)$ is not negative semidefinite. Then we have an effective $X \in V(C_1, \dots, C_q)$ such that $X^2 > 0$. Replacing X by a positive multiple if necessary, we may assume that X is a usual divisor. $X^2 > 0$ implies $\kappa(X) = 2$ by Riemann Roch theorem. Therefore, moreover, we may assume that the rational map defined by the linear system |X| is birational (see [1]). Write X = H + F where F is the fixed component of |X|. Then H is effective and $H \in V(C_1, \dots, C_q)$. Hence $LH \leq 0$ by the assumption on L. On the other hand, H is semipositive since |H| has no fixed component. So $LH \geq 0$ since L is pseudo effective. Thus we have LH = 0. This implies $H \in V(C_1, \dots, C_r)$ by assumption on L. Moreover, $H^2 > 0$ since |X| defines a birational map. This contradicts that $I(C_1, \dots, C_r)$ is negative definite. Thus we prove that $I(C_1, \dots, C_q)$ is negative semidefinite.

Assume that $I(C_1, \dots, C_q)$ is not negative definite. Then by (1.9) we have an effective $X_j \in V(C_1, \dots, C_q)$ with $(C_j + X_j)C_i = 0$. By assumption on L we have $L(C_j + X_j) < 0$. On the other hand, $C_j + X_j$ is semipositive by (1.4). So the above inequality contradicts that L is pseudo effective. Q.E.D.

(1.11) Corollary. Let L be a pseudo effective Q-line bundle.

T. FUJITA

Then there are only finitely many prime divisors $\{C_i\}$ with $LC_i < 0$.

Proof. Let C_1, \dots, C_q be prime divisors with $LC_i < 0$. Then $I(C_1, \dots, C_q)$ is negative definite by (1.10). So the Chern classes of C_i are linearly independent. Hence $q \leq \rho =$ the Picard number of S. So there are at most ρ such divisors.

(1.12) Theorem. Let L be a pseudo effective Q-line bundle. Then there is an effective Q-divisor N such that

a) H=L-N is semipositive,

- b) $HC_i=0$ for any prime component C_1, \dots, C_q of N,
- c) $I(C_1, \dots, C_q)$ is negative definite.

Moreover, N is determined uniquely by the above properties.

Proof. Let C_1, \dots, C_{q_1} be all the prime divisors such that $LC_i < 0$ (cf. (1.11)). Take $N_1 \in V(C_1, \dots, C_{q_1})$ such that $LC_i = N_1C_i$ for $i = 1, \dots, q_1$. Then N_1 is effective by (1.7) and $L_1 = L - N_1$ is pseudo effective by (1.8). If L_1 is semipositive, then N_1 satisfies the desired condition. If not, let $C_{q_1+1}, \dots, C_{q_2}$ be all the prime divisors with $L_1C_j < 0$. Then $I(C_1, \dots, C_{q_2})$ is negative definite by (1.10). So we have $N_2 \in V(C_1, \dots, C_{q_2})$ such that $L_1C_i = N_2C_i$ for $i = 1, \dots, q_2$. N_2 is effective by (1.7). $L_2 = L_1 - N_2$ is pseudo effective by (1.8). If L_2 is semipositive, then $N = N_1 + N_2$ satisfies the desired condition. If not, we construct similarly $N_3 \in V(C_1, \dots, C_{q_2})$ and $L_3 = L_2 - N_3$. Suppose that this process does not end till L_k . Then $I(C_1, \dots, C_{q_k})$ is negative definite and $k \leq q_k \leq$ the Picard number of S. Hence k cannot go to ∞ . Thus we obtain a semipositive L_k after finite steps. Then $N = N_1 + \dots + N_k$ satisfies the desired condition.

The uniqueness of such N is proved by the same argument as in [8]. Q.E.D.

Remark. Zariski showed this result in case L is an effective Q-divisor.

(1.13) The above N is called the (arithmetically) negative part of L and L=H+N is called the Zariski decomposition of L. Note that H is pseudo effective by (1.8).

§2. Miyanishi's theory and the Zariski problem.

(2.1) A surface S is called *cylinderlike* if $S \cong A^1 \times C$ for a curve C. Using this notion, Miyanishi showed the following facts.

(2.2) Theorem. Let S be a surface such that $S \times A^1 \cong A^3$. Suppose that S contains a cylinderlike open subset. Then $S \cong A^2$ (cf. [5]).

(2.3) Theorem. Let \overline{S} be a complete surface and let D be an effective divisor on \overline{S} with singularities at most normal crossings such that $S = \overline{S} - D$ is affine. Suppose that for any $F \in \text{Pic}(\overline{S})$ we have $|F+t(K+D)| = \emptyset$ for $t \gg 0$, where K denotes the canonical bundle of \overline{S} . Then S contains a cylinderlike open subset (cf. [6]).

No. 3]

(2.4) We remark that $\bar{\kappa}(S) = -\infty$ if $S \times A^1 \cong A^3$ (see [3]). Using these results, we reduce the Zariski problem to the following

(2.5) Proposition. Let S be a complete rational surface and let D be an effective divisor on it. Suppose that $\kappa(K+D) = -\infty$ where K is the canonical bundle of S. Then, for any $F \in \text{Pic}(S)$, $\kappa(F+t(K+D)) = -\infty$ for $t \gg 0$.

Before proving this, we show a couple of lemmas.

(2.6) Lemma. Let S be a complete surface and let F, $L \in \text{Pic}(S)$. Suppose that $\kappa(F+t_jL) \geq 0$ for a sequence $\{t_j\}$ with $\lim_{j\to\infty} t_j = \infty$. Then L is pseudo effective.

Proof. Let *H* be any semipositive *Q*-line bundle. Then $(F+t_jL)H \ge 0$ since $|m(F+t_jL)| \ne \emptyset$ for some m > 0. Letting $j \rightarrow \infty$, we infer that $LH \ge 0$. Q.E.D.

(2.7) Lemma. If both L and -L is pseudo effective, then L is numerically equivalent to zero.

Proof is easy.

(2.8) Now we prove (2.5). By (2.6), it suffices to show that $\kappa(K+D) \ge 0$ if K+D is pseudo effective. So let K+D=H+N be the Zariski decomposition of K+D. If mH is a usual line bundle for a positive integer m, then $\kappa(mH)$ is defined and is independent of (cf. [1]). We denote it by $\kappa(H)$. Then $\kappa(K+D) \ge \kappa(H)$ since N is effective. We have $H^2 = (H+N)H = (K+D)H \ge 0$ since K+D is pseudo effective. If $H^2 > 0$, then we infer easily $\kappa(H) = 2$ by the Riemann-Roch theorem. So it suffices to consider the case in which the equality holds. Then $KH = -DH \leq 0$. This implies $h^0(tmH) + h^0(K - tmH) > 0$ for any positive integer t by the Riemann-Roch theorem. Assume $\kappa(H)$ $=-\infty$. Then $|K-tmH| \neq \emptyset$ for any t > 0, and -H is pseudo effective So H is numerically equivalent to zero by (2.7), and H=0by (2.6). since S is rational. This contradicts $\kappa(H) = -\infty$. Q.E.D.

§ 3. Topological characterization of A^2 . In this section everything is defined over C. Details and proofs will be published elsewhere.

Combining Miyanishi's theory with (2.5), we can prove the following

(3.1) Theorem. Let S be an affine smooth surface with $\bar{\kappa}(S) = -\infty$. Then S contains a cylinderlike open subset.

This result enables us to study surfaces from a topological viewpoint. In particular we obtain

(3.2) Theorem. Let S be an affine smooth surface with $\bar{\kappa}(S) = -\infty$, $H_1(S; Z) = H_2(S; Z) = 0$. Then $S \cong A^2$.

(3.3) Corollary. Let S be an affine surface. Suppose that $S \times V \cong A^2 \times V$ for some algebraic variety V. Then $S \cong A^2$.

Because both $\bar{\kappa}$ and H.(; Z) are cancellation invariants.

(3.4) Using the result of Kambayashi [4], one can generalize (3.3)

in the case of any ground field of characteristic zero.

(3.5) There is an affine smooth surface which is topologically contractible but not isomorphic to A^2 (see [7, § 3]). In case of this Ramanujan surface, we have $\bar{\kappa}=2$ (see [2a]).

(3.6) It is desirable to establish the ruling theorem (3.1) also for non-affine surfaces. If this is done, then we can substitute $H_3(S; Z) = 0$ for the condition "S is affine" in (3.2), (3.3).

(3.7) Finally we would like to ask the following

Question. Let M be a topologically contractible manifold with $\bar{\kappa}(M) = -\infty$. Then $M \cong A^n$?

References

- S. Iitaka: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23, 356-373 (1971).
- [2] ——: Logarithmic Kodaira dimension of algebraic varieties. Complex Analysis and Algebraic Geometry, Iwanami (1977).
- [2a] ——: Some applications of logarithmic Kodaira dimension. Proc. Int. Symp. Algebraic Geometry in Kyoto, Kinokuniya, 185–206 (1977).
- [3] S. Iitaka and T. Fujita: Cancellation theorem for algebraic varieties. J. Fac. Soc. Univ. of Tokyo, 24, 123-127 (1977).
- [4] T. Kambayashi: On the absence of non-trivial separable forms of the affine plane. J. Algebra, 35, 449-456 (1975).
- [5] M. Miyanishi: An algebraic characterization of the affine plane. J. Math. Kyoto Univ., 15, 169-184 (1975).
- [6] M. Miyanishi and T. Sugie: Affine surfaces containing cylinderlike open sets (to appear in J. Math. Kyoto Univ.).
- [7] C. P. Ramanujan: A topological characterization of the affine plane as an algebraic variety. Ann. of Math., 94, 69-88 (1971).
- [8] O. Zariski: The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ibid., 76, 560-615 (1962).

110