24. The Spectrum of the Laplacian and Boundary Perturbation. I

By Daisuke Fujiwara, Masao Tanikawa, and Shûichi Yukita
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. J. A., April 12, 1978)

Introduction. Let Ω be a bounded domain in \boldsymbol{R}^{2} with smooth boundary γ. We assume, for simplicity, that Ω is simply connected. Consider eigenvalue problem for the Laplacian under Dirichlet condition

$$
\left\{\begin{align*}
(-\Delta-\lambda) u(x) & =0 \quad x \in \Omega \tag{1}\\
\left.u\right|_{r} & =0 .
\end{align*}\right.
$$

Let $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots$ be the eigenvalues of the problem (1). These are functions of γ. The totality of the boundaries γ, with appropriate regularity, forms a separable Hilbert manifold Γ. A subset of Γ is called residual if it is a countable intersection of open dense subsets of Γ. Our main theorem is

Theorem 1. There is a residual subset B of Γ such that for any $\gamma \in B$ all the eigenspaces of the problem (1) are of dimension one.

Since the complement of B is a set of first category, Theorem 1 means that for generic γ the eigenvalues of the Laplacian are all simple. Similar results were already obtained by Uhlenbeck [4] in the case of potential perturbation or in the case that Δ is the Laplace Beltrami operator on a compact Riemannian manifold and the perturbation is that of the metric.

Theorem 1 was conjectured by Arnold [1]. But the proof was not given as far as the present authors know. Our proof can easily be generalized to the case that Ω is a domain of \boldsymbol{R}^{n}.
\S 1. The Hilbert manifold Γ of boundary curves. Let S^{1} be the unit circle $=\left\{e^{i \theta} \mid 0 \leq \theta \leq 2 \pi\right\}$. Let $\Gamma^{k}(k \geq 1)$ be the totality of embeddings

$$
\gamma ; \bar{S}^{1} \ni e^{i \theta} \longrightarrow \gamma(\theta)=\left(x_{1}(\theta), x_{2}(\theta)\right) \in \boldsymbol{R}^{2}
$$

such that the functions $x_{1}(\theta)$ and $x_{2}(\theta)$ belong to the Sobolev space $H^{k}\left(S^{1}\right)$ of order k. $\quad \gamma(\theta)$ is of class $C^{k-1}\left(S^{1}\right)$ by virtue of Sobolev embedding theorem. Let $\gamma^{\prime} \in \Gamma^{k}$ and let $\gamma^{\prime}(\theta)=\left(x_{1}^{\prime}(\theta), x_{2}^{\prime}(\theta)\right)$. Then we put

$$
\begin{equation*}
\rho\left(\gamma, \gamma^{\prime}\right)=\left(\left\|x_{1}-x_{1}^{\prime}\right\|_{c}^{2}+\left\|x_{2}-x_{2}^{\prime}\right\|_{k}^{2}\right)^{1 / 2}, \tag{1.1}
\end{equation*}
$$

where $\left\|\|_{k}\right.$ denotes the Sobolev norm of order k. We can easily see that Γ^{k} is a separable Hilbert manifold and that $\rho\left(\gamma, \gamma^{\prime}\right)$ is a metric compatible with this structure.

In the following, we fix $k \geq 5$ and abbreviate Γ^{k} as Γ. Let $\gamma \in \Gamma$. Then γ is a simple Jordan curve of class C^{k-1} and γ bounds a bounded
simply connected domain Ω_{γ} in \boldsymbol{R}^{2}. The unit outer normal vector $\nu(\theta)$ to γ at $\gamma(\theta)$ is of class C^{2}. Tubular neighbourhood theorem holds for γ. Hence, there exists a positive constant $\varepsilon(\gamma)$ such that, for any $\gamma^{\prime} \in \Gamma$ satisfying $\rho\left(\gamma, \gamma^{\prime}\right)<\varepsilon(\gamma)$, there exists a diffeomorphism $\omega_{r}^{r^{\prime}} ; \bar{\Omega}_{r} \rightarrow \bar{\Omega}_{\gamma^{\prime}}$ of class C^{4} whose restriction to γ coincides with $\gamma^{\prime} \circ \gamma^{-1}$. Moreover, taking $\varepsilon(\gamma)$ smaller if necessary, we may assume that the correspondence $\left(\gamma, \gamma^{\prime}\right)$ $\rightarrow \omega_{r}^{r^{\prime}}$ is of class C^{4}. Therefore, if $\gamma_{t}, t \in[0,1]$, is a C^{1} curve in Γ starting at $\gamma \equiv \gamma_{0}$, then we have one parameter family of mappings $\left\{\omega_{r}^{\tau_{r}}\right\}_{t \in[0,1]}$. At every $x \in \bar{\Omega}_{r}$, we put

$$
\begin{equation*}
X(x)=\left.\frac{\partial \omega_{r}^{r_{t}}(x)}{\partial t}\right|_{t=0} . \tag{1.2}
\end{equation*}
$$

Then $X(x)=\left(X_{1}(x), X_{2}(x)\right)$ is a vector field defined in $\bar{\Omega}_{r}$. Since $\omega_{r}^{r^{\prime}}$ is not uniquely determined, the vector field $X(x)$ is not uniquely determined by the curve γ_{t}. However its restriction to γ, that is, $\delta \gamma(\theta)=X(\gamma(\theta))$ is uniquely determined by the curve γ_{t} in Γ. Thus the vector field $\theta \rightarrow \delta \gamma(\theta)=X(\gamma(\theta))$ is identified with the tangent vector to γ_{t} at $\gamma_{0}=\gamma$. Thus we have

$$
\begin{equation*}
T_{r} \Gamma=\left\{\delta \gamma(\theta) \mid \delta \gamma(\theta)=X(\gamma(\theta)) \in H^{k}\left(S^{1}\right) \times H^{k}\left(S^{1}\right)\right\} . \tag{1.3}
\end{equation*}
$$

The normal components of $\delta \gamma(\theta)$ is given by

$$
\begin{equation*}
\left\{\delta \gamma(\theta), \nu_{\theta}\right\}=\left\langle X(\gamma(\theta)), \nu_{\theta}\right\rangle \tag{1.4}
\end{equation*}
$$

where \langle,$\rangle denotes Euclidean inner product in \boldsymbol{R}^{2}$.
§2. Main theorem. Let $\gamma \in \Gamma$ and Ω_{γ} be as above. We consider problem (1) in Ω_{r}. Since the manifold Γ is separable, Theorem 1 can be localized.

Theorem 1'. At every $\tilde{\gamma} \in \Gamma$, there exist an open neighbourhood $U(\tilde{\gamma})$ of $\tilde{\gamma}$ and its residual subset $\boldsymbol{B}(\tilde{\gamma})$ such that for any $\gamma \in B(\tilde{\gamma})$ all the eigenspaces of problem (1) with $\Omega=\Omega_{r}$ are of dimension one.

Now we make a sketch of the proof of Theorem 1^{\prime}. Let $g_{r}\left(x, x^{\prime}\right)$ be the Green function for the Dirichlet problem in Ω_{r}. The Green operator is defined by

$$
\begin{equation*}
G_{r} u(x)=\int_{a_{r}} g_{r}\left(x, x^{\prime}\right) u\left(x^{\prime}\right) d x^{\prime} \tag{2.1}
\end{equation*}
$$

The eigenvalue problem (1) for $\Omega=\Omega_{r}$ is transformed into

$$
\begin{equation*}
\left(I-\lambda G_{\tau}\right) u(x)=0 \tag{2.2}
\end{equation*}
$$

We may consider this in $L^{2}\left(\Omega_{\gamma}\right)$. Let $U(\tilde{\gamma})=\{\gamma \in \Gamma \mid \rho(\tilde{\gamma}, \gamma)<\varepsilon(\tilde{\gamma})\}$ and let $\gamma \in U(\tilde{\gamma})$. Then there is a C^{4} diffeomorphism

$$
\omega_{p}^{r} ; \bar{\Omega}_{r} \longrightarrow \bar{\Omega}_{r}
$$

as stated in §1. For any $u \in L^{2}\left(\Omega_{\gamma}\right)$ the function $\omega_{\gamma}^{*} u(x)=u\left(\omega_{\gamma}^{\gamma}(x)\right) \in L^{2}\left(\Omega_{\gamma}\right)$. Putting $\tilde{u}(x)=\omega_{q}^{r^{*}} u(x)$ and $\tilde{v}(x)=\omega_{q}^{*} v(x)$, we have

$$
\begin{equation*}
\int_{a_{r}} u(y) v(y) J_{\gamma}^{q}(y) d y=\int_{\Omega q} \tilde{u}(x) \tilde{v}(x) d x, \tag{2.3}
\end{equation*}
$$

where $J_{\tau}^{\psi}(y)=$ the Jacobian of the map $\omega_{r}^{\tau^{-1}}$. The eigenvalue problem (2.2) is equivalent to

$$
\begin{equation*}
\left(I-\lambda G_{p}^{r}\right) \tilde{u}(x)=0, \tag{2.4}
\end{equation*}
$$

where $\tilde{u}(x)=\left(\omega_{q}^{*} u\right)(x)$ and $G_{\gamma}^{r}=\omega_{\gamma}^{r *} G_{r}\left(\omega_{\gamma}^{*}\right)^{-1}$. Thus we consider problem (2.4) in the fixed Hilbert space $\mathfrak{h}=L^{2}\left(\Omega_{\mathfrak{q}}\right)$. Let

$$
\mathfrak{S}=\left\{\left.\tilde{u} \in L^{2}\left(\Omega_{q}\right)\left|\int_{\Omega q}\right| \tilde{u}(x)\right|^{2} d x=1\right\}
$$

be the unit sphere of \mathfrak{h}. Clearly, \mathfrak{S} is a separable Hilbert manifold. We define the following map:

$$
\begin{align*}
\Phi ; U(\tilde{\gamma}) \times \mathbb{S} \times \boldsymbol{R} & \longrightarrow \stackrel{\mathfrak{G}}{\underset{\sim}{*}} \tag{2.5}\\
(\gamma, \tilde{u}, \lambda) & \longrightarrow \Phi(\gamma, \tilde{u}, \lambda)=\left(\tilde{u}-\lambda G_{\gamma}^{r} \tilde{u}\right) .
\end{align*}
$$

We can easily prove
Proposition 1. The mapping Φ is a C^{4} Fredholm mapping of index 0.

Let $(\gamma, \tilde{u}, \lambda) \in U(\tilde{\gamma}) \times \subseteq \times \boldsymbol{R}$. Then, the differential of Φ at this point is

$$
\begin{equation*}
\delta \Phi(\gamma, \tilde{u}, \lambda)=\delta \lambda G_{\gamma}^{r} \tilde{u}+\left(I-\lambda G_{\gamma}^{r}\right) \delta \tilde{u}+\lambda\left(\delta G_{\gamma}^{r}\right) u . \tag{2.6}
\end{equation*}
$$

The condition $\delta \tilde{u} \in T_{\tilde{u}}$ © is

$$
\begin{equation*}
\int_{\Omega \eta} \tilde{u}(x) \delta \tilde{u}(x) d x=0 . \tag{2.7}
\end{equation*}
$$

The last term of the right hand side of (2.6) is the variation caused by the boundary perturbation $\delta \gamma(\theta)=X(\gamma(\theta)) \in T_{r} \Gamma$. This term can be calculated explicitly.

Proposition 2 (Hadamard's variational formula). For any $u \in L^{2}\left(\Omega_{\gamma}\right)$, we have

$$
\begin{equation*}
\left(\omega_{\gamma}^{\gamma^{*}}\right)^{-1}\left(\delta G_{\gamma}^{\tau}\right) \omega_{\gamma}^{r^{*}} u(y)=V_{\delta \gamma} u(y) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{align*}
V_{\delta_{r}} u(y)= & -\int_{\Omega_{r}} \int_{r} \frac{\partial g_{r}(y, \gamma(\theta))}{\partial \nu_{\theta}} \frac{\partial g_{r}\left(\gamma(\theta), y^{\prime}\right)}{\partial \nu_{\theta}}\left\langle X(\gamma(\theta)), \nu_{\theta}\right\rangle d \sigma_{\theta} u\left(y^{\prime}\right) d y^{\prime} \tag{2.9}\\
& +\left\langle\operatorname{grad} G_{r} u(y), X(y)\right\rangle-G_{r}(\langle X, \operatorname{grad} u\rangle)(y) .
\end{align*}
$$

Here $d \sigma_{\theta}$ is the line element of γ and $\left\langle X(\gamma(\theta)), \nu_{\theta}\right\rangle \in T_{r} \Gamma$ as described in §1. (For the proof of this, see [2], [3].)

Now we can prove,
Theorem 2. $\mathfrak{h} \ni 0$ is the regular value of the mapping

$$
\Phi ; U(\tilde{\gamma}) \times \widetilde{S} \times \boldsymbol{R} \longrightarrow \mathfrak{h} .
$$

Proof. Assume that $\Phi(\gamma, \tilde{u}, \lambda)=0 \in \mathfrak{h}$. Then,

$$
\begin{equation*}
\left(I-\lambda G_{\vartheta}^{r}\right) \tilde{u}=0 \tag{2.10}
\end{equation*}
$$

Setting $u(x)=\left(\omega_{q}^{\gamma^{*}}\right)^{-1} \tilde{u}$, we have

$$
\begin{equation*}
\left(I-\lambda G_{r}\right) u=0 \quad \text { in } L^{2}\left(\Omega_{\gamma}\right) . \tag{2.11}
\end{equation*}
$$

We want to prove that the image of $\delta \Phi(\gamma, \tilde{u}, \lambda)$ coincides with $\mathfrak{G}=L^{2}(\Omega)_{\gamma}$. Assume that $\tilde{v} \in \mathfrak{G}$ is orthogonal to the image of $\delta \Phi(\gamma, \tilde{u}, \lambda)$. Then

$$
\begin{align*}
0= & \delta \lambda \int_{\Omega q} G_{\tilde{\gamma}}^{r} \tilde{u}(x) \tilde{v}(x) d x+\int_{\Omega q}\left(I-\lambda G_{p}^{r}\right) \tilde{u}(x) \tilde{v}(x) d x \tag{2.12}\\
& +\lambda \int_{\Omega q}\left(\delta G_{\tilde{r}}^{r}\right) \tilde{u}(x) \tilde{v}(x) d x
\end{align*}
$$

$\delta \tilde{u} \in J_{\tilde{u} \subseteq} \subseteq$ satisfies (2.7) or equivalently,

$$
\begin{equation*}
\int_{\Omega_{r}} u(y) \delta u(y) J_{r}^{q}(y) d y=0 \tag{2.13}
\end{equation*}
$$

where $\delta \tilde{u}=\left(\omega_{F}^{* *}\right)^{-1} \delta u$. The equation (2.12) is equivalent to the system of equations

$$
\begin{gather*}
\int_{a_{r}} u(y) w(y) d y=0 \tag{2.14}\\
\int_{a_{r}}\left(\left(I-\lambda G_{r}\right) \delta \tilde{u}\right)(y) w(y) d y=0 \tag{2.15}
\end{gather*}
$$

where we put

$$
\begin{equation*}
w(y)=\left(\omega_{\gamma}^{r^{*}}\right)^{-1} \tilde{v}(y) J_{\gamma}^{\tau}(y) . \tag{2.17}
\end{equation*}
$$

Since $\delta \tilde{u}$ is arbitrary except for the condition (2.13), we obtain from (2.15) that
(2.18) $\quad\left(I-\lambda G_{\gamma}\right) w(y)=C \cdot u(y) J_{\gamma}^{\eta}(y)$
with some constant C. On the other hand $I-\lambda G_{\gamma}$ is symmetric in $L^{2}\left(\Omega_{\gamma}\right)$ and $u \in \operatorname{ker}\left(I-\lambda G_{r}\right)$. Therefore,

$$
0=\int_{a_{r}} u(y)\left(I-\lambda G_{r}\right) w(y) d y=C \int_{a_{r}}|u(y)|^{2} J_{r}^{\psi}(y) d y .
$$

This yields that $C=0$ and

$$
\begin{equation*}
\left(I-\lambda G_{r}\right) w(y)=0 \quad \text { in } L^{2}\left(\Omega_{r}\right) \tag{2.19}
\end{equation*}
$$

Consequently, $w(y) \in C^{4}\left(\bar{\Omega}_{r}\right)$ and

$$
\begin{align*}
(-\Delta-\lambda) w(y) & =0 \quad \text { in } \Omega_{r} \tag{2.20}\\
\left.w\right|_{r} & =0 .
\end{align*}
$$

As a consequence of (2.11), (2.19) and (2.16), we have

$$
\begin{equation*}
\lambda^{-1} \int_{\gamma} \frac{\partial u}{\partial \nu_{\theta}}(\gamma(\theta)) \frac{\partial w}{\partial \nu_{\theta}}(\gamma(\theta))\left\langle X(\gamma(\theta)), \nu_{\theta}\right\rangle d \sigma_{\theta}=0 . \tag{2.21}
\end{equation*}
$$

Since $\left\langle X(\gamma(\theta)), \nu_{\theta}\right\rangle=\delta \gamma(\theta)$ is arbitrary and $u \not \equiv 0$,

$$
\begin{equation*}
\frac{\partial w}{\partial \nu_{\theta}}(\gamma(\theta)) \equiv 0 \tag{2.22}
\end{equation*}
$$

in some open set of γ. It follows from this, (2.20) and Aronszajn's theorem, that

$$
w(y) \equiv 0 \quad \text { for } \forall y \in \Omega_{r} .
$$

Thus $\tilde{v}(x) \equiv 0$. This proves Theorem 2.
Theorem 1^{\prime} follows from Theorem 2 and a result of Uhlenbeck [4].
§3. Manifolds of operators with multiple eigenvalues. Let \mathcal{L}_{+}^{2} $=$ the totality of symmetric positive Hilbert-Schmidt operators. Then \mathcal{L}_{+}^{2} is also a separable Hilbert manifold. For any $K \in \mathcal{L}_{+}^{2}$, let $\mu_{1}(K)$ $\geq \mu_{2}(K) \geq \mu_{3}(K) \geq \cdots>0$ denote its eigenvalues. We put for any pair of positive integers l, m,

$$
\begin{aligned}
Q_{l m}= & \left\{K \in \mathcal{L}_{+}^{2} \mid \text { the eigenvalues of } K\right. \text { satisfy } \\
& \left.\mu_{l-1}(K)>\mu_{l}(K)=\mu_{l+1}(K)=\cdots=\mu_{l+m-1}(K)>\mu_{l+m}(K)\right\} .
\end{aligned}
$$

Theorem 3. For any pair of positive integers $l \geq 1$ and $m \geq 2, Q_{l m}$ is a C^{∞} submanifold of \mathcal{L}_{+}^{2} of codimension $(1 / 2)(m-1)(m+2)$.

Proof. Let K^{0} be an arbitrary point in $Q_{l m}$. Let $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$ be eigenvectors of K^{0}. Let
$E_{0}=$ the vector space generated by $\varphi_{l}, \varphi_{l+1}, \cdots, \varphi_{l+m-1}$, $E_{1}=E_{0}^{\perp}$.
Let π_{0} and π_{1} be orthogonal projection onto E_{0} and E_{1}, respectively. For any $K \in \mathcal{L}_{+}^{2}$, we define

$$
A(K)=-\pi_{0} K \pi_{1}+\pi_{1} K \pi_{0}
$$

and

$$
\Psi(K)=\exp A(K)\left(\pi_{0} K \pi_{0}+\pi_{1} K \pi_{1}\right) \exp -A(K) .
$$

Then $\Psi: \mathcal{L}_{+}^{2} \rightarrow \mathcal{L}_{+}^{2}$ is a C^{∞} mapping and $\Psi\left(K^{0}\right)=K^{0}$. Implicit function theorem proves that there is two neighbourhoods $\mathfrak{H}\left(K^{0}\right)$ and $\mathfrak{N}\left(K^{0}\right)$ of K^{0} in \mathcal{L}_{+}^{2} such that Ψ is a diffeomorphism of $\mathfrak{H}\left(K^{0}\right)$ and $\mathfrak{B}\left(K^{0}\right)$. We can easily prove that

$$
\begin{aligned}
\mathfrak{B}\left(K^{0}\right) \cap Q_{l m}= & \left\{K \in \mathfrak{B}\left(K^{0}\right) \mid\left(\Psi^{-1}(K) \varphi_{l+p}, \varphi_{l+q}\right)\right. \\
& \left.=\delta_{p q}\left(\Psi^{-1}(K) \varphi_{l}, \varphi_{l}\right) \quad 1 \leq p, q \leq m-1\right\}
\end{aligned}
$$

Theorem 3 is proved.

References

[1] Arnold, V. I.: Modes and quasi-modes. Functional Anal. and its Appl., 6, 94-101 (1972).
[2] Garabedian, P. R.: Partial Differential Equations. John-Wiley \& Sons, New York (1964).
[3] Hadamard, J.: Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées. Oeuvres, C.N.R.S. tom. 2, 515-631 (1968).
[4] Uhlenbeck, K.: Generic properties of eigen functions. Amer. J. Math., 98, 1059-1078 (1976).

