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Introduction. Let D be a bounded domain in R with smooth
boundary ,. We assume, for simplicity, that t2 is simply connected.
Consider eigenvalue problem or the Laplacian under Dirichlet con-
dition

( 1 {(-zl-)u(x) =0 x e 9

Let 0_<_<_<. be the eigenvalues o the problem (1). These are
functions of ,. The totality of the boundaries ,, with appropriate
regularity, forms a separable Hilbert manifold F. A subset of F is
called residual if it is a countable intersection of open dense subsets of
F. Our main theorem is

Theorem 1, There is a residual subset B of F such that for any
e B all the eigenspaces of the problem (1) are of dimension one.

Since the complement of B is a set o first category, Theorem 1
means that or generic , the eigenvalues of the Laplacian are all simple.
Similar results were already obtained by Uhlenbeck [4] in the case of
potential p.erturbation or in the case that 1 is the Laplace Beltrami
operator on a compact Riemannian manifold and the perturbation is
that of the metric.

Theorem 1 was conjectured by Arnold [1]. But the proo was not
given as far as the present authors know. Our proof can easily be
generalized to the case that/2 is a domain of R.

1. The Hilbert manifold T’ of boundary curves. Let S be the
unit circle--{e 0_<O_<2z). Let F (/c_> 1) be the totality of embeddings

r; S e’ ;r() =(x(), x.()) e R
such that the unctions x(O) and x(O) belong to the Sobolev space H(S1)
of order k. r(t?) is of class C-(S) by virtue of Sobolev embedding
theorem. Let r’ e F and let r’(O)=(x(O), x’(O)). Then we put
(1.1) P(r, r’) (11 x--x 11 / x-- xg I1)/,
where ]1 denotes the Sobolev norm o order k. We can easily see that
F is a separable Hilbert manifold and that p(,, ,’) is a metric com-
patible with this structure.

In the ollowing, we fix k >_5 and abbreviate F as F. Let , e F.
Then , is a simple Jordan curve o class C- and - bounds a bounded



88 D. FUJIWARA, lYI. TANIKAWA, and S. YUKITA [Vol. 54 (A),

simply connected domain 9 in R2. The unit outer normal vector ,(t)
to " at ,(t) is of class C2. Tubular neighbourhood theorem holds for ,.
Hence, there exists a positive constant (,) such that, for any ,’e F
satisfying p(,, ,’)(,) there exists a diffeomorphism 9-9, of
class C whose restriction to , coincides with ,’o ,-. Moreover, taking

e(,) smaller if necessary, we may assume that the correspondence (-, ,’)
-.’ is of class C. Therefore, if ,, $ e [0, 1], is a C curve in F start-
ing at ,_= ’0, then we have one parameter family of mappings
At every x e 9r, we put

(1 2) X(x)= 3wrr*(x)
t t=o"

Then X(x)--(X(x), X(x)) is a vector field defined in 9. Since w is not
uniquely determined, the vector field X(x) is not uniquely determined by
the curve ,t. However its restriction to ,, that is, ,(0)=X(-(0)) is unique-
ly determined by the curve ,t in F. Thus the vector field t-*,(t)-X(,(t))
is identified with the tangent vector to ,t at ’0-’. Thus we have
(1.3) TrF----{ar(o) ar(o)--X(r(O)) e H(S) H(S’)}.
The normal components of a,(t) is given by
(1.4) {3’(0), ,,}= <X(7’(0)),
where <, > denotes Euclidean inner product in R.

2. Main theorem. Let " e F and tgr be as above. We consider
problem (1) in 9r. Since the manifold F is separable, Theorem 1 can
be localized.

Theorem 1’. At every e F, there exist an open neighbourhood

U() of and its residual subset B(7) such that for any e B(7) all the
eigenspaces of problem (1) with [2=9 are of dimension one.

Now we make a sketch of the proof of Theorem 1’. Let gr(x, x’)
be the Green function for the Dirichlet problem in tgr. The Green
operator is defined by

(2.1) Gu(x) g(x, x’)u(x’)dx’.

The eigenvalue problem (1) for 9=9r is transformed into
(2.2) (I-2G)u(x)--O.
We may consider this in L(9). Let U() {, e F Ip(?, ’) e()} and let, e U(7). Then there is a C diffeomorphism

as stated in 1. For any ueL(gr) the function o*u(x)=u(or(x))eL(gr).
Putting (x)=o*u(x) and (x)=o*v(x), we have

where J(y)=the Jacobian of the map w-’. The eigenvalue problem
(2.2) is equivalent to
(2.4) (I-2G)(x)=O,
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where (x)=(wr*u)(x) and G=,0* ,-*- Thus we consider problem
(2.4) in the fixed Hilbert space =L(gr). Let

be the unit sphere of . Clearly, is a separable Hilbert manifold.
We define the ollowing map:

(2.5)
(r, , ) #(r, , ) (--G).

We can easily prove
Proposition 1. The mapping is a C Fredholm mapping of

index O.
Let (r, , 2) e U(?) x X R. Then, the differential of # at this point is

(2.6) 3#(r, , )=3G+(I-G)3+(3G)u.
The condition 3 eT is

(2.7) [ (x)(x)dx O.

The last term of the right hand side of (2.6) is the variation caused by
the boundary perturbation 3y(O)=X(y(O))e TrF. This term can be
calculated explicitly.

Proposition 2 (Hadamard’s variational formula). For any
u e L(9), we have
(2.8) (w*)-’(3GOo*u(y) V,ru(y)
where

(2.9)
_f 3gr(Y, ,(t?)) 3gr(r(8), y’) (X(r(8)) ,o}daou(y’)dyVru(y)

+ (grad Gru(y), X(y)}-Gr((X, grad u})(y).
Here da is the line element of and (X(,(t)), , e TrF as described in

1. (For the proo of this, see [2], [3].)
Now we can prove,
Theorem 2. 0 is the regular value of the mapping

q; Uff)xxR- ;.
Proof. Assume that (, , 2)=0 e . Then,

(2.10) (I-2G)=0.
Setting u(x)=(w*)-, we have
(2.11) (I-G)u=O in L(9).
We want to prove that the image of O(r, , ]) coincides with L(D)r.
Assume that e is orthogonal to the image of (, , ). Then

0=2 G(x)#(x)dx+, (I--2G)(x)#(x)dx
(2.12)

+ Jar (6G)(x)(x)dx.
3 e Ja satisfies (2.7) or equivalently,
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(2.13) u(y)3u(y)J(y)dy--O,

where/--(w*)-lu. The equation (2.12) is equivalent to the system of
equations

(2.14) I u(y)w(y)dy--O,

(2.15) ((I--2Gr))(y)w(y)dy=O,

(2.16) ; Vru(x)w(x)dx=O,
where we ut
(.7 w( (*-(vJ(v.
Since g is arbitrary exeep for the condition (2.1g), we obtain from
(2. lg) ha
(2.18) (I- 2Gr)w(y) C u(y)J(y)
with some constant C. On the other hand I-G is symmetric in L(9)
and u e ker (I-2Gr). Therefore,

his yields, that C=0 and

Consequently, () e C(9) and
(2.20) ( A 2)w(g) =0 in

As a consequence o (2.11), (2.19) and (2.16), we have

Since <X(r(O)), u0)=Sr(0) is arbigrary and 0,

in some oen se of r. It follows from this, (2.20) and Aronsajn’s
heorem, ha

w(y) 0 for vy
Thus (x)0. This proves Theorem 2.

Theorem 1’ ollows rom Theorem 2 and a result of Uhlenbeck [4].. Manifolds of operators with multiple eigenvalues. Let
=the totality of symmetric positive Hilbert-Schmidt operators. Then

is also a separable Hilbert manifold. For any K e, let z(K)
z(K)z(K). 0 denote its eigenvalues. We put for any pair
positive integers l, m,

Q={K e ]the eigenvalues of K satisfy

Theorem . For any pair of positive integers ll and m2, Q
is a C submanifold of of codimension (1/2)(m- 1)(m + 2).
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Proof. Let K be an arbitrary point in Q,. Let 1, ., 3, be
eigenvectors of K. Let

E0=the vector space generated by , /,..., /_,

E--Eo.
Let 0 and u be orthogonal projection onto E0 and E, respectively. For
any K e _g’+, we define

A(K)= --0Kl+lKo
and

(K)=exp A(K)(oKzo+K) exp --A(K).
Then " P++ is a C mapping and r(K)=K. Implicit function
theorem proves that there is two neighbourhoods ll(K) and 9(K) of K
in + such that r is a diffeomorphism of I(K) and (K). We can
easily prove that

(K) f Q,={K e (K) (-l(K)q+v,
Svq(-l(K)pt, t) 1 <_ p, qgm-- 1}.

Theorem 3 is proved.
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