24. The Spectrum of the Laplacian and Boundary Perturbation. I

By Daisuke FUJIWARA, Masao TANIKAWA, and Shûichi YUKITA Department of Mathematics, University of Tokyo

(Communicated by Kôsaku YOSIDA, M. J. A., April 12, 1978)

Introduction. Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary γ . We assume, for simplicity, that Ω is simply connected. Consider eigenvalue problem for the Laplacian under Dirichlet condition

(1)
$$\begin{cases} (-\Delta - \lambda)u(x) = 0 & x \in \Omega \\ u|_{x} = 0. \end{cases}$$

Let $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$ be the eigenvalues of the problem (1). These are functions of γ . The totality of the boundaries γ , with appropriate regularity, forms a separable Hilbert manifold Γ . A subset of Γ is called residual if it is a countable intersection of open dense subsets of Γ . Our main theorem is

Theorem 1. There is a residual subset B of Γ such that for any $\gamma \in B$ all the eigenspaces of the problem (1) are of dimension one.

Since the complement of B is a set of first category, Theorem 1 means that for generic γ the eigenvalues of the Laplacian are all simple. Similar results were already obtained by Uhlenbeck [4] in the case of potential perturbation or in the case that \varDelta is the Laplace Beltrami operator on a compact Riemannian manifold and the perturbation is that of the metric.

Theorem 1 was conjectured by Arnold [1]. But the proof was not given as far as the present authors know. Our proof can easily be generalized to the case that Ω is a domain of \mathbb{R}^n .

§ 1. The Hilbert manifold Γ of boundary curves. Let S^1 be the unit circle = $\{e^{i\theta} | 0 \le \theta \le 2\pi\}$. Let Γ^k $(k \ge 1)$ be the totality of embeddings $\gamma; \quad S^1 \ni e^{i\theta} \longrightarrow \gamma(\theta) = (x_1(\theta), x_2(\theta)) \in \mathbb{R}^2$

such that the functions $x_1(\theta)$ and $x_2(\theta)$ belong to the Sobolev space $H^k(S^1)$ of order k. $\gamma(\theta)$ is of class $C^{k-1}(S^1)$ by virtue of Sobolev embedding theorem. Let $\gamma' \in \Gamma^k$ and let $\gamma'(\theta) = (x'_1(\theta), x'_2(\theta))$. Then we put (1.1) $\rho(\gamma, \gamma') = (||x_1 - x'_1||_k^2 + ||x_2 - x'_2||_k^2)^{1/2}$,

where $\| \|_k$ denotes the Sobolev norm of order k. We can easily see that Γ^k is a separable Hilbert manifold and that $\rho(\gamma, \gamma')$ is a metric compatible with this structure.

In the following, we fix $k \ge 5$ and abbreviate Γ^k as Γ . Let $\gamma \in \Gamma$. Then γ is a simple Jordan curve of class C^{k-1} and γ bounds a bounded simply connected domain Ω_{τ} in \mathbb{R}^2 . The unit outer normal vector $\nu(\theta)$ to γ at $\gamma(\theta)$ is of class C^2 . Tubular neighbourhood theorem holds for γ . Hence, there exists a positive constant $\varepsilon(\gamma)$ such that, for any $\gamma' \in \Gamma$ satisfying $\rho(\gamma, \gamma') < \varepsilon(\gamma)$, there exists a diffeomorphism $\omega_{\tau}^{r'}$; $\overline{\Omega}_{\tau} \to \overline{\Omega}_{\tau'}$ of class C^4 whose restriction to γ coincides with $\gamma' \circ \gamma^{-1}$. Moreover, taking $\varepsilon(\gamma)$ smaller if necessary, we may assume that the correspondence $(\gamma, \gamma') \to \omega_{\tau'}^{r'}$ is of class C^4 . Therefore, if γ_t , $t \in [0, 1]$, is a C^1 curve in Γ starting at $\gamma \equiv \gamma_0$, then we have one parameter family of mappings $\{\omega_{\tau'}^{r_t}\}_{t \in [0, 1]}$. At every $x \in \overline{\Omega}_{\tau}$, we put

(1.2)
$$X(x) = \frac{\partial \omega_r^{r_t}(x)}{\partial t} \bigg|_{t=0}.$$

Then $X(x) = (X_1(x), X_2(x))$ is a vector field defined in Ω_r . Since $\omega_r^{r'}$ is not uniquely determined, the vector field X(x) is not uniquely determined by the curve γ_t . However its restriction to γ , that is, $\delta\gamma(\theta) = X(\gamma(\theta))$ is uniquely determined by the curve γ_t in Γ . Thus the vector field $\theta \rightarrow \delta\gamma(\theta) = X(\gamma(\theta))$ is identified with the tangent vector to γ_t at $\gamma_0 = \gamma$. Thus we have (1.3) $T_r \Gamma = \{\delta\gamma(\theta) | \delta\gamma(\theta) = X(\gamma(\theta)) \in H^k(S^1) \times H^k(S^1)\}.$

The normal components of $\delta \gamma(\theta)$ is given by

(1.4) $\{\delta\gamma(\theta),\nu_{\theta}\} = \langle X(\gamma(\theta)),\nu_{\theta}\rangle$

where \langle , \rangle denotes Euclidean inner product in \mathbb{R}^2 .

§ 2. Main theorem. Let $\gamma \in \Gamma$ and Ω_{γ} be as above. We consider problem (1) in Ω_{γ} . Since the manifold Γ is separable, Theorem 1 can be localized.

Theorem 1'. At every $\tilde{\gamma} \in \Gamma$, there exist an open neighbourhood $U(\tilde{\gamma})$ of $\tilde{\gamma}$ and its residual subset $B(\tilde{\gamma})$ such that for any $\gamma \in B(\tilde{\gamma})$ all the eigenspaces of problem (1) with $\Omega = \Omega_{\gamma}$ are of dimension one.

Now we make a sketch of the proof of Theorem 1'. Let $g_r(x, x')$ be the Green function for the Dirichlet problem in Ω_r . The Green operator is defined by

(2.1)
$$G_{\tau}u(x) = \int_{g_{\tau}} g_{\tau}(x, x')u(x')dx'.$$

The eigenvalue problem (1) for $\Omega = \Omega_r$ is transformed into (2.2) $(I - \lambda G_r)u(x) = 0.$

We may consider this in $L^2(\Omega_{\gamma})$. Let $U(\tilde{\gamma}) = \{\gamma \in \Gamma \mid \rho(\tilde{\gamma}, \gamma) \leq \varepsilon(\tilde{\gamma})\}$ and let $\gamma \in U(\tilde{\gamma})$. Then there is a C^4 diffeomorphism

$$\omega_r^r; \, \overline{\Omega}_r \longrightarrow \overline{\Omega}_r$$

as stated in §1. For any $u \in L^2(\Omega_r)$ the function $\omega_r^{r^*}u(x) = u(\omega_r^r(x)) \in L^2(\Omega_r)$. Putting $\tilde{u}(x) = \omega_r^{r^*}u(x)$ and $\tilde{v}(x) = \omega_r^{r^*}v(x)$, we have

(2.3)
$$\int_{a_{\tau}} u(y)v(y)J_{\tau}^{r}(y)dy = \int_{a_{\tau}} \tilde{u}(x)\tilde{v}(x)dx,$$

where $J_{\tau}^{r}(y) =$ the Jacobian of the map ω_{τ}^{r-1} . The eigenvalue problem (2.2) is equivalent to

(2.4)
$$(I - \lambda G_r^i)\tilde{u}(x) = 0,$$

where $\tilde{u}(x) = (\omega_r^* u)(x)$ and $G_r^r = \omega_r^* G_r(\omega_r^*)^{-1}$. Thus we consider problem (2.4) in the fixed Hilbert space $\mathfrak{h} = L^2(\Omega_r)$. Let

$$\mathfrak{S} = \left\{ \tilde{u} \in L^2(\Omega_p) \left| \int_{\Omega_p} |\tilde{u}(x)|^2 dx = 1 \right\}$$

be the unit sphere of \mathfrak{h} . Clearly, \mathfrak{S} is a separable Hilbert manifold. We define the following map:

We can easily prove

Proposition 1. The mapping Φ is a C⁴ Fredholm mapping of index 0.

Let $(\gamma, \tilde{u}, \lambda) \in U(\tilde{\gamma}) \times \mathfrak{S} \times \mathbb{R}$. Then, the differential of Φ at this point is (2.6) $\delta \Phi(\gamma, \tilde{u}, \lambda) = \delta \lambda G_{\tilde{\tau}} \tilde{u} + (I - \lambda G_{\tilde{\tau}}) \delta \tilde{u} + \lambda (\delta G_{\tilde{\tau}}) u$.

The condition
$$\delta u \in T_{\tilde{u}} \mathfrak{S}$$
 is

(2.7)
$$\int_{a_r} \tilde{u}(x)\delta\tilde{u}(x)dx = 0$$

The last term of the right hand side of (2.6) is the variation caused by the boundary perturbation $\delta\gamma(\theta) = X(\gamma(\theta)) \in T_{\tau}\Gamma$. This term can be calculated explicitly.

Proposition 2 (Hadamard's variational formula). For any $u \in L^2(\Omega_r)$, we have

(2.8)
$$(\omega_r^{r*})^{-1}(\delta G_r^r)\omega_r^{r*}u(y) = V_{\delta_r}u(y)$$
where

(2.9)
$$V_{\delta\gamma}u(y) = -\int_{a_{\gamma}}\int_{\gamma} \frac{\partial g_{\gamma}(y,\gamma(\theta))}{\partial\nu_{\theta}} \frac{\partial g_{\gamma}(\gamma(\theta),y')}{\partial\nu_{\theta}} \langle X(\gamma(\theta)),\nu_{\theta}\rangle d\sigma_{\theta}u(y')dy'$$

$$+\langle \operatorname{grad} G_r u(y), X(y) \rangle - G_r(\langle X, \operatorname{grad} u \rangle)(y).$$

Here $d\sigma_{\theta}$ is the line element of γ and $\langle X(\gamma(\theta)), \nu_{\theta} \rangle \in T_{\gamma}\Gamma$ as described in § 1. (For the proof of this, see [2], [3].)

Now we can prove,

Theorem 2. $\mathfrak{h} \ni 0$ is the regular value of the mapping Φ ; $U(\tilde{\gamma}) \times \mathfrak{S} \times \mathbf{R} \longrightarrow \mathfrak{h}$.

Proof. Assume that $\Phi(\gamma, \tilde{u}, \lambda) = 0 \in \mathfrak{h}$. Then,

$$(2.10) (I - \lambda G_r^r) \tilde{u} = 0.$$

Setting $u(x) = (\omega_r^{r^*})^{-1} \tilde{u}$, we have

(2.11) $(I - \lambda G_r)u = 0 \quad \text{in } L^2(\Omega_r).$

We want to prove that the image of $\delta \Phi(\gamma, \tilde{u}, \lambda)$ coincides with $\mathfrak{h} = L^2(\Omega)_{\gamma}$. Assume that $\tilde{v} \in \mathfrak{h}$ is orthogonal to the image of $\delta \Phi(\gamma, \tilde{u}, \lambda)$. Then

(2.12)
$$0 = \delta \lambda \int_{\varrho_{\overline{r}}} G_{\overline{r}}^{r} \tilde{u}(x) \tilde{v}(x) dx + \int_{\varrho_{\overline{r}}} (I - \lambda G_{\overline{r}}^{r}) \delta \tilde{u}(x) \tilde{v}(x) dx + \lambda \int_{\varrho_{\overline{r}}} (\delta G_{\overline{r}}^{r}) \tilde{u}(x) \tilde{v}(x) dx.$$

 $\delta \tilde{u} \in J_{\tilde{u}} \mathfrak{S}$ satisfies (2.7) or equivalently,

(2.13)
$$\int_{\varrho_{\tau}} u(y) \delta u(y) J_{\tau}^{*}(y) dy = 0,$$

where $\delta \tilde{u} = (\omega_{\tilde{r}}^{x^*})^{-1} \delta u$. The equation (2.12) is equivalent to the system of equations

(2.14)
$$\int_{a_r} u(y)w(y)dy = 0,$$

(2.15)
$$\int_{a_r} ((I - \lambda G_r)\delta \tilde{u})(y)w(y)dy = 0,$$

(2.16)
$$\int_{a_r}^{a_r} \int_{a_r} V_{\delta r} u(x) w(x) dx = 0,$$

where we put

(2.17) $w(y) = (\omega_{\tau}^{*})^{-1} \tilde{v}(y) J_{\tau}^{*}(y).$ Since $\delta \tilde{u}$ is arbitrary except for the condition (2.13), we obtain from (2.15) that

(2.18) $(I - \lambda G_r) w(y) = C \cdot u(y) J_r^r(y)$

with some constant C. On the other hand $I - \lambda G_r$ is symmetric in $L^2(\Omega_r)$ and $u \in \ker(I - \lambda G_r)$. Therefore,

$$0 = \int_{a_r} u(y)(I - \lambda G_r)w(y)dy = C \int_{a_r} |u(y)|^2 J_r^*(y)dy.$$

This yields that C=0 and

(2.19)
$$(I - \lambda G_r)w(y) = 0$$
 in $L^2(\Omega_r)$.
Consequently, $w(y) \in C^4(\overline{\Omega}_r)$ and
(2.20) $(-\Delta - \lambda)w(y) = 0$ in Ω_r
 $w|_r = 0$.

As a consequence of (2.11), (2.19) and (2.16), we have

(2.21)
$$\lambda^{-1} \int_{\tau} \frac{\partial u}{\partial \nu_{\theta}} (\gamma(\theta)) \frac{\partial w}{\partial \nu_{\theta}} (\gamma(\theta)) \langle X(\gamma(\theta)), \nu_{\theta} \rangle d\sigma_{\theta} = 0.$$

Since $\langle X(\gamma(\theta)), \nu_{\theta} \rangle = \delta \gamma(\theta)$ is arbitrary and $u \not\equiv 0$,

(2.22)
$$\frac{\partial w}{\partial \nu_{\theta}}(\gamma(\theta)) \equiv 0$$

in some open set of γ . It follows from this, (2.20) and Aronszajn's theorem, that

$$w(y) \equiv 0$$
 for $\forall y \in \Omega_r$.

Thus $\tilde{v}(x) \equiv 0$. This proves Theorem 2.

Theorem 1' follows from Theorem 2 and a result of Uhlenbeck [4].

§ 3. Manifolds of operators with multiple eigenvalues. Let \mathcal{L}_{+}^{2} =the totality of symmetric positive Hilbert-Schmidt operators. Then \mathcal{L}_{+}^{2} is also a separable Hilbert manifold. For any $K \in \mathcal{L}_{+}^{2}$, let $\mu_{1}(K)$ $\geq \mu_{2}(K) \geq \mu_{3}(K) \geq \cdots > 0$ denote its eigenvalues. We put for any pair of positive integers l, m,

 $Q_{lm} = \{K \in \mathcal{L}^2_+ | \text{the eigenvalues of } K \text{ satisfy} \}$

 $\mu_{l-1}(K) > \mu_l(K) = \mu_{l+1}(K) = \cdots = \mu_{l+m-1}(K) > \mu_{l+m}(K) \}.$

Theorem 3. For any pair of positive integers $l \ge 1$ and $m \ge 2$, Q_{lm} is a C^{∞} submanifold of \mathcal{L}^{2}_{+} of codimension (1/2)(m-1)(m+2).

Proof. Let K^0 be an arbitrary point in Q_{lm} . Let $\varphi_1, \varphi_2, \varphi_3, \cdots$ be eigenvectors of K^0 . Let

$$E_0$$
 = the vector space generated by $\varphi_l, \varphi_{l+1}, \dots, \varphi_{l+m-1}, E_1 = E_0^{\perp}$.

Let π_0 and π_1 be orthogonal projection onto E_0 and E_1 , respectively. For any $K \in \mathcal{L}^2_+$, we define

$$A(K) = -\pi_0 K \pi_1 + \pi_1 K \pi_0$$

and

$$\Psi(K) = \exp A(K)(\pi_0 K \pi_0 + \pi_1 K \pi_1) \exp -A(K).$$

Then $\Psi: \mathcal{L}^2_+ \to \mathcal{L}^2_+$ is a C^{∞} mapping and $\Psi(K^0) = K^0$. Implicit function theorem proves that there is two neighbourhoods $\mathfrak{U}(K^0)$ and $\mathfrak{V}(K^0)$ of K^0 in \mathcal{L}^2_+ such that Ψ is a diffeomorphism of $\mathfrak{U}(K^0)$ and $\mathfrak{V}(K^0)$. We can easily prove that

$$\mathfrak{V}(K^{0}) \cap Q_{lm} = \{ K \in \mathfrak{V}(K^{0}) \mid (\mathscr{V}^{-1}(K)\varphi_{l+p}, \varphi_{l+q}) \\ = \delta_{pq}(\mathscr{V}^{-1}(K)\varphi_{l}, \varphi_{l}) \quad 1 \leq p, q \leq m-1 \}.$$

Theorem 3 is proved.

References

- Arnold, V. I.: Modes and quasi-modes. Functional Anal. and its Appl., 6, 94-101 (1972).
- [2] Garabedian, P. R.: Partial Differential Equations. John-Wiley & Sons, New York (1964).
- [3] Hadamard, J.: Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées. Oeuvres, C.N.R.S. tom. 2, 515-631 (1968).
- [4] Uhlenbeck, K.: Generic properties of eigen functions. Amer. J. Math., 98, 1059-1078 (1976).