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Absolute Continuity o Probability Laws
o Wiener Functionals
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1. The Wiener space, which is a typical example of abstract
Wiener spaces introduced by L. Gross [1], is, a triple (B, H, Z) where B
is a Banach space consisting of all real valued continuous unctions
x(t) (x(0)-- 0) defined on the interval [0, 1] with norm IIx II--sup0<t<l
H is. a Hilbert space consisting of absolutely continuous, functions, x(t)
(x(0)--0) such that x’(t)e L[0, 1] with inner product

and/ is the Wiener measure, i.e., the Borel probability measure on B
such that

(1) ;B eh’x’/(dx):exp (-- (h,
where h e B* cH and (,) is, a natural paring o B* and B. It is readily
seen that (x(t) 0 < < 1} is. a standard Wiener process, on the probability
space (B,/). A real-valued (or more generally, a Banach space-valued)
measurable function defined on the probability space (B, Z) is called a
Wiener functional. Two Wiener functionals F(x) and F(x) are
identified if /(x F(x)=F.(x)} =0. Typical examples of Wiener func-
tionals are solutions, of stochastic differential equation,s or multiple
Wiener integrals (see It5 [2]).

Malliavin [3] introduced a notion of derivatives of Wiener func-
tionals and applied it to the absolute continuity of the probability law
induced by a solution of stochastic differential equations at a fixed time.
Here, we define the derivatives of Wiener functionals in a somewhat
different way and rephrase a theorem of Malliavin. We will apply it
to the absolute continuity of the probability law induced by a system
of multiple Wiener integrals..

2. Let (B,H,/) be the Wiener space or more generally, any
abstract Wiener space. Let E be a Banach space, F be a mapping
rom B into E, and _L(B,E) denote the space of all bounded linear
operators from B into E. If there exists, an operator T e A:(B, E) such
that
2 ) F(x / y) F(x) T(y) - o(]] y ]]) as. Y -0 (Y e B),

then F is, said to be B-differentiable at x e B, and the operator T is
called the B-derivative (or Frchet derivative)of F at x e B, F’(x) in
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notation. If F is B-differentiable at every point of B, we say simply
that F is B-di]erentiable. Similarly, if there exists an operator
S e _(H, E) such that
( 3 ) F(x+h)-F(x)--S(h)+o(Ihl) as lhl-0 (h e H),
then F is said to be H-di]erentiable at x e B, and the operator S is
called the H-derivative of F at x B, DF(x) in notation. If F is H-
differentiabl at every point of B, we say that F is H-diferentiable.
Clearly if F is B-differentiable, then F is also H-differentiable, and
DF(x) F’(x)I. Inductively we can define F", F’", ., and DF, DF,... We may regard F() as an element oi _L(B,E) and DF as an
element of _L’(H, E), where _n(B, E) is a space of continuous n-linear
operators rom B into E, and A:(H, E) is defined similarly. When E
is a Hilbert space, S e _’(H, E) is said to be of Hilbert-Schmidt class i

( 4 , IS(hl, h, ..., hn) I < c
or any orthonormal system {h}= of H. We denote by .()(H, E) the
space of all S e _(H,E) which are of Hilbert-Schmidt class. Then

H_L(.)( E) is a Hilbert space with its inner product given by

( 5 (T,S}, (,.)= , (T(hl, h, ..., hn), S(h,, h,..., hi)
ili2 in=

for T,S e .()(H,E), where {h}__ is a complete orthonormal system
in H.

Definition 1o Let K be a Hilbert space, and F be a Wiener unc-
tional from B into K. Then F e H(po, p, ..., p)(K), (Po, P, "", P> 1)
if and only if F satisfies the following.

( ) F e L(/ K) and there exists a sequence {f}= o n times B-
differentiabl mappings from B into K, such that f e L(/; K) and
limf=F in L0(/ K), where L0(/ K) is a set of all Wiener func-
tionals f" B-K such that

(6) f,,0(,:)=( [f(x),

(ii) for m= 1, 2, ., n, Df(x) belongs to A:(.)(H, K) for all x e B
and a sequence {Df}= is a Cauchy sequence in L(/ _(.)(H, K));

(iii) for an.y k= 1, 2, ., there exists a finite dimensional projec-
tion Q such that f(x)=f(Qx).
Then, we define DF as the limit of (Df}=l in L(/; .ff()(H,K)),
and call DF the m-th weak H-derivative.

The sequence (f} in (i) is called an approximating sequence. We
can easily show that DF does not depend on the choice of an approxi-
mating sequence and hence is well defined.

Definition 2. Let F" B-R be a twice B-differentiable function.
Then the Ornstein-Uhlenbeck operator L is defined by
( 7 ) (LF)(x) trace (DF(x)) (F’(x), x).
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Definition 3. Let F be an R-valued Wiener functional defined on
B. Then F e H(po, p, p p), (P0, P, P, P> 1) if and only if F satisfies
the following.

( ) F e H(po, p, p)(R)
(ii) there exists an approximating sequence {f};= in H(p0, p, p)

or F satisfying also that {Lf}= is a Cauchy sequence in LP(/).
We call the limit of {Lf}= the L-derivative of F, LF in notation.
(Note that the limit is independent of choice of {f}o.)

Theorem 1. Let F--(F, F, ., F) be an Rn-valued Wiener func-
tional defined on B. We azsume F satisfies the following.

(i) FeH(1,2,1;1),i=l,2,...,n;
(ii) a(x)--(DF(x), DF(X)}H e H(1, 2, 1 1), i, ]-- 1, 2, n
(iii) det (a(x)):/:0 p-a.e.

Then the probability law of F is absolutely continuous with respect to
Lebesgue measure on R.

3. We denote by Iv(f) a multiple Wiener integral for f eL([0, 1]),
where/ means the space of symmetric functions.

Theorem 2. For every n e N and Po, P, ", P 1, I(f) e H(po,
p, ..., pn)(R) and (DI(f), h}H--PI_(g), where

( 8 ) g(t, t,..., t,_)=.[o f(t, t,..., t,_,, t,)h’(t,)dt for h e H.

As an approximating sequence for I,(f), we can take I(f) where

f is a special step unction in the sense of It5 [2] which tends to f in
L([0, 1]). In the proof, the following equality (which is a generali-
zation of Theorem 2.2 of [2]) plays an important role.

I(f)Iq(g)
( 9 ) ,q , I/_(c(i, ..., i ], ..., ])f(R)g),

=0 {i,...,it}{1,2,...,p}
{]1,..., j}: {,,... ,q}

where {,,...,{1,,..., denotes, for each fixed l<pAq, the sum over
{j,...,j}{1,2,...,q}

all possible wa.ys of choosing different elements ili. it from
[1, 2, ..., p} and then associating ] e {1, 2, ., q} to i (k: 1, 2, ., l)
such that {], ], ., ]} are different elements in {1, 2, ., q}, and
c(i, ..., i ]1, "", ])f(R)g is defined b$

c(i, ., i ], ]t)f(R)g(tl, ., t,, ., t, ..., t,
81 8j 8j$ 8q)

8q)dUl. .dut,

ti--U 8,---U

t--U 8--Ut
where, for example, t, means that the variable t is removed and

ou means that the variable t, is replaced by the variable u.
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From (8) we see that D/I(f)=O for every f e L([0, 1]). Also
we can prove Lip(f)-=--pip(f).

Theorem 3. Let F be a real-valued Wiener functional given by

F--$=0Ip(fp), fpeL2([0,1]P), p l, 2, ., n. If f O, then the
probability law on R induced by F is absolutely continuous.

Theorem 4. Let F=(F,F, .,F) be an R-valued Wiener

functional given by

r() e L([0, 1])."(i) i 1,2, n,F I[),
p=O

We assume that F satisfies that there exists h e H such that

I’" "I"’r(l t, ., t)h’(t) h’(t,)dt, dt,

J. , t2, tN,)h’(t2)...h’(t,)dt2...dt.
are linearly independent in L[O, 1]. Then the probability law on R
induced by F is absolutely continuous.
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