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1. The Wiener space, which is a typical example of abstract
Wiener spaces introduced by L. Gross [1], is a triple (B, H, ) where B
is a Banach space consisting of all real valued continuous functions
x(t) (x(0)=0) defined on the interval [0, 1] with norm ||z || =supo<;<; |2 ()],
H is a Hilbert space consisting of absolutely continuous functions x(t)
(2(0)=0) such that x/(¢) € L*[0, 1] with inner product

(¥ =j & @y (Bdt

and y is the Wiener measure, i.e., the Borel probability measure on B
such that

(1) L e' ™ y(dx) =exp {— —;—<h, h>H},

where h ¢ B*C H and (, ) is a natural paring of B* and B. Itisreadily
seen that {x(¢) ; 0t <1} is a standard Wiener process on the probability
space (B, p). A real-valued (or more generally, a Banach space-valued)
measurable function defined on the probability space (B, p) is called a
Wiener functional. Two Wiener functionals F,(x) and F,(x) are
identified if p{x; Fi(x)=F(x)}=0. Typical examples of Wiener func-
tionals are solutions of stochastic differential equations or multiple
Wiener integrals (see Ito [2]).

Malliavin [3] introduced a notion of derivatives of Wiener func-
tionals and applied it to the absolute continuity of the probability law
induced by a solution of stochastic differential equations at a fixed time.
Here, we define the derivatives of Wiener functionals in a somewhat
different way and rephrase a theorem of Malliavin. We will apply it
to the absolute continuity of the probability law induced by a system
of multiple Wiener integrals.

2. Let (B,H,p) be the Wiener space or more generally, any
abstract Wiener space. Let E be a Banach space, F' be a mapping
from B into E, and _L(B, E) denote the space of all bounded linear
operators from B into E. If there exists an operator T € _L(B, E) such
that
(2) Fa+y—F@=Tw+o(lylD)  as|y|—-0(yeB),
then F is said to be B-differentiable at x € B, and the operator T is
called the B-derivative (or Fréchet derivative) of F at z e B, F'(x) in
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notation. If F is B-differentiable at every point of B, we say simply
that F is B-differentiable. Similarly, if there exists an operator
S e _L(H,E) such that
(3) F@+h)~F@)=SM) +o(hly)  as|h|z—0 (heH),
then F' is said to be H-differentiable at x € B, and the operator S is
called the H-derivative of F at x e B, DF(x) in notation. If F is H-
differentiable at every point of B, we say that F' is H-differentiable.
Clearly if F' is B-differentiable, then F' is also H-differentiable, and
DF(x)=F"(x) |z. Inductively we can define F’/, F"”, . .., and D*F, D°F,
We may regard F™ as an element of _£*(B,FE) and D"F' as an
element of _"(H, F), where _L™(B, F) is a space of continuous »n-linear
operators from B into F, and _L*(H, E) is defined similarly. When F
is a Hilbert space, S € _L*(H, F) is said to be of Hilbert-Schmidt class if
(4) Z 1|S(hiv h’iz’ . ’th)I2E<OO

11,8200 5in=

for any orthonormal system {%;};>, of H. We denote by _.L7%,(H, E) the
space of all Se ["(H,FE) which are of Hilbert-Schmidt class. Then
L5 (H, E) is a Hilbert space with its inner product given by

(5) <T’S>_[72)(H,E):i ; i . <T(h'i1’ hi,» tt hzn), S(hi,, hw ) hiﬂ)>E

for T,S e L% (H, E), where {h;};, is a complete orthonormal system
in H.

Definition 1. Let K be a Hilbert space, and F' be a Wiener func-
tional from B into K. Then F € H(py, D1y -+ + s Do)K), 0oy D1y -+ 5 Dp=1)
if and only if F satisfies the following.

(i) F e L?(u; K) and there exists a sequence {f;};-, of n times B-
differentiable mappings from B into K, such that f, € L*(x; K) and
lim,_.. f,=F in L?(u; K), where L*(y; K) is a set of all Wiener func-
tionals f : B—K such that

(6) 17 o ={ [ |/ @ & )} ™ < oo

(ii) for m=1,2,...,n, D™f.(x) belongs to L% (H, K) for all z ¢ B
and a sequence {D™f,}7., is a Cauchy sequence in L*(u; L% (H, K));

(iii) for any k=1,2, - - -, there exists a finite dimensional projec-
tion @, such that /() =7,(Q,x).

Then, we define D™F as the limit of {D™f,}r, in L’(x; L3(H, K)),
and call D™F the m-th weak H-derivative.

The sequence {f;} in (i) is called an approximating sequence. We
can easily show that D™F does not depend on the choice of an approxi-
mating sequence and hence is well defined.

Definition 2. Let F: B—R be a twice B-differentiable function.
Then the Ornstein-Uhlenbeck operator L is defined by
(7) (LF)(x)=trace (D*F(x)) —(F'(x), x).
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Definition 3. Let F be an R-valued Wiener functional defined on
B. Then F € H(py, D1, P23 Pr)s 0os P1s 2y Pr.=>1) if and only if F satisfies
the following.

(i) F e H(po, p1s p)(R);

(ii) there exists an approximating sequence {f;};-, in H(p,, 0y, D>)
for F' satisfying also that {Lf,};_, is a Cauchy sequence in L?%(y).
We call the limit of {Lf,};., the L-derivative of F, LF in notation.
(Note that the limit is independent of choice of {f;};-,.)

Theorem 1. Let F=(F', F?, ..., F") be an R™valued Wiener func-
tional defined on B. We assume F satisfies the following.

(i) F‘eHQ1,2,1;1),1=1,2,.---,7n;

(ii) o“(x)=<DF¥x), DF'(x)>, ¢ H1,2,1;1), ¢,7=1,2,.--n;

(iii) det (¢*/(®))#0 p-a.e.
Then the probability low of F is absolutely continuous with respect to
Lebesgue measure on R™.

3. Wedenote by I,(f) a multiple Wiener integral for f eﬁ([O, 1]19),
where > means the space of symmetric functions.

Theorem 2. For every ne N and Dy, Dy, - -+, D=1, 1,(f) € H(p,,
Dy + -+ P(R) and (DI (f), hyy=pl,_(9), where

1
(8)  gltyts - ~,tp_1)=j0 Pty -+ by EW(E,)dE,  for heH.

As an approximating sequence for I,(f), we can take I ,(f,) where
fx is a special step function in the sense of 1t6 [2] which tends to f in
L*([0,11?). 1In the proof, the following equality (which is a generali-
zation of Theorem 2.2 of [2]) plays an important role.

1,(N1(9)

PAG

=Z Z Ip+q—zl(c(iu v "il,;jn . 9.7L)f®g)y
i=0 {il,"',i.z)c(l,z ,,,,, p}
J1seees Jupc{1, 2,00 q}

where > ... cin.... denotes, for each fixed I<pAgq, the sum over
{71 J13C{L,2,e 0, q}

all possible ways of choosing ! different elements 7, <¢,<--.<i, from
{1,2, .-+, p} and then associating j,€{1,2, ---,q} to i, (k=1,2,---,D
such that {j,7, ---,7,) are different elements in {1,2,.--,q}, and
ey vy 3 G v v o, 1) fRg is defined by
C(il, o ',il;ju . "jl)f®g(t1’ v ’,tily t ”tip o ‘/’\tp, ~
Sy 38y s Sy "',Sq)
1 1
(10) =j\0 e ID f(tlv ] tp)g('gl’ ) Sq)du1° . ‘dul,
til—>u1 Sjl'—*ul

.....

t,—u, S5,
where, for example, t;, means that the variable ¢, is removed and ¢,
—u, means that the variable ¢;, is replaced by the variable u,.
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From (8) we see that D?*'] ,(f)=0 for every f ¢ ﬁ([O, 117). Also
we can prove LI, (f)=—pl,(f).

Theorem 3. Let F be a real-valued Wiener functional given by
F=>01,(f»), f,el(0,11?), p=1,2,---,n. If f,0, then the
probability law on R induced by F is absolutely continuous.

Theorem 4. Let F=(F',F? ...,F") be an R*-valued Wiener
functional given by

Fi=S LG, =12, ,n, 1 e L0, 117).
p=0
We assume that F satisfies that there exists h ¢ H such that
1
[l ittt @D WEwdt -,
0 0

[ ot - ta W@ Wt Dty d,
0 0

are linearly independent in L*0,1]. Then the probability law on R™
induced by F is absolutely continuous.
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