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31. On the Absolute Norlund Summability of
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Faculty of Engineering, Shinshu University, Nagano

(Communicated by Kdsaku Yo0SIDA, M. J. A,, May 12, 1978)

§1. Let > a, be any given infinite series with s, as its n-th par-
tial sum. If {p,} is a sequence of constants, real or complex, and
Po=py+p,+ -+ +Pn; Ppe=p_,=0,  for k=1,
then the Norlund mean ¢, of > a, is defined by
1.1 t, —-——Z y L2 ksk———Z P,_xay, (P,=x0).
P, ¥=o
If the series

(1.2) LA AN

converges, then the series > a, is said to be absolutely summable
(N, p,), or summable |N, p,|.

In the special cases in which pn=A;‘1=<nzf_Il), «>0 and p,

=1/(n+1), summability |N, p,| are the same as the summability |C, «|
and the absolute harmonic summability, respectively.

Let {¢,(®)} be an orthonormal system defined in the interval (a, b).
We suppose that f(x) belongs to L*(a, b) and

F@)~ 33 anpa@).
By E&(f), we denote the best approximation to f(x) in the metric of
L? by means of polynomials Zakgok(x), ie., (EP(NY= Z laz?. We

write

N 5 A ) Pn—k>2
1.3 ( _Pas
( ) ";‘ P4 pn pn—k
and

dAp =2y —Ap_;.

A denotes a positive absolute constant that is not always the same.

§2. The purpose of this paper is to give a general theorem on
the almost everywhere summability |N, p,] of orthogonal series and
deduce several known and new results from the theorem by the similar
method as that used by Ul’yanov [T7].

Our theorem reads as follows:

Theorem 1. Let {2(n)} be a positive sequence such that {2(n)/n}
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18 a4 non-increasing sequence and the series i} 1/n0Q2(n) converges. Let
n=1
{p.} be non-negative and non-increasing. If the series f‘;, la, W)W,
n=1

converges, then the orthogonal series i 0, (%) is summable |N, p,|
n=1

almost everywhere, where W, is defined by (1.3).
We shall require the following lemmas.
Lemma 1 [1]. If {t,} is defined by (1.1), then
Pn Pn-k
PnPn 1 Z= pn k( n _5;:;)“’0.
Lemma 2 [6]. If we put p,=Az"or 1/(n+1), then we have
oQ), for 1/2<ax1
O(log k), for a=1/2
L3 PP (P P loge),  for 0<a<1/2
ik Poo A\pn Das/ |,
O(k(og k)™,  for p,=1/(n+1).
Proof of Theorem 1. By Lemma 1 and Schwarz inequality, we
have

ty—th =

1

Az 2— 2 {Z ﬁn-k(lpa _ P k) laklz}m

p Pn 1 V=1 n n-k
2 1/2
<Al 30 g1 oo Test) o)
n k=1 D n-k

Hence we have by Schwarz inequality

© b oo 2 n 2 1/2
5 [t dos s (B2 5 (T Tosk) o)

R I L

I/ZQ(n)m{ P; .

=4 (i ng(n))m{mnggz)pn & P k( ﬁn P:_:) Iaklz}m
<4 {f; a3 _}Q@lp@»&.—_ (%_%) }1/2
< {i |ae Q(lc)W,c}<oo

by virtue of the hypotheses of theorem. Thus this completes the
proof of our theorem (see [6]).

Now, we consider some applications of our theorem. If we put
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2(n)=log n (log log n)!** (¢>0) in Theorem 1 and use Lemma 2, we have
the following theorems.

Theorem 2 [7]. If 1=a>1/2 and > |a,[ log n (log log n)'** con-
verges, then the series ij Gnn() 18 sSummable | C, a| almost everywhere.
n=1

Theorem 3 [7]. If i |a,? (log n)* (log log n)'*c converges, then the
series Z.o @0, (%) is summable |C,1/2| almost everywhere.
n=1
Theorem 4 [7]. If 0<a<1/2 and Z”] la,[F n'~%* log n(log log n)'**

converges, then the series f} @.0,(%) ts summable |C, | almost every-
n=1

where.

Theorem 5. If i |a,[? n(log n)~* (log log n)'** converges, then the

n=ng

series i‘ @0, (%) is summable |[N,1/n+1| almost everywhere.
n=1
Next, we suppose that 2(0)=0 and W,=0. Then we obtain
310 QW =33 0" 3 4@ W)

@1) =32 4@W 3 e
= glA(Q(k)Wk){E;Z>(f>}2.

By Lemma 2, we have
O(k~*(log log k)'**), for 1/2<a<],
©2.2) AQUW,)= O(lc:1 log k(log log k)!*), for a=1/2,
O(k~* log k(log log k)'**), for 0<a<1/2,
O((log k)~(log log k)'**), for p,=1/(n+1).
Hence, by (2.1) and (2.2), we can restate these theorems in the follow-
ing forms, respectively.

Theorem 6 [7]. If 1za>1/2 and i} n~'(log log n)'*{EP(f)} con-

n=ngp

verges, then the series }:‘;, a,0n(x) is summabdle |C, | almost everywhere.
n=1

Theorem 7 [7]. If f n~! log n(log log n)'"*{EX(f)Y converges,
then the series i} @0, (%) is summable |C,1/2| almost everywhere.
n=1
Theorem 8 [7]. If0<a<1/2and i n~%log n(log log n)'*{E@ ()}

n=ng

converges, then the series 3, a,0,(x) is summable |C, a| almost every-
n=1

where.
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Theorem 9. If Z”] (log n)~*(log log n)"*{E®(f)}* converges, then

n=np

the series i Cnn() ts summable |[N,1/n+1| almost everywhere.
n=1
§3. Let f(x) e L¥0,2x) and
3.1) fx) ~—;—ao+f‘_, (&, cos nx+b, sin nx)si} A, ().
n=1 n=0
Let Q(d, f) denote one of the following integral moduli:
@, )= sup {[ @+ —f@—trda}
0st=o 0
2n 1/2
oG, N=sup {[" @20+ @—20—-27@Pds}
0SSt 0
@ _ 1 ( 27 _ e > 1/2
w (s, f)_{%_ [[([f v@+t—ra—vraz)at)”,

3
0
1 0 2 1/2
wp@, N={1[ ([ U@+2+ f@—20—27@Pd)at) .
Leindler [4] established the following equivalence theorem for the
trigonometric system.
Theorem A. Let 0<B=2. LetA(x)(x=1) be a positive monotone
function such that
oo 1
i=n KFA(K) nf=1A(n)
Then four conditions

(jj"[f(xm—f(x—t)]de)“dt<oo,

J#am

[ Eﬁ( { [/ @+20)+ f@—20)~2f @)da) " dt<oo,
i _1__9(_1_., f)p< 0
and

e 1
— {E@(NH¥ <o
are mutually equivalent.

By Theorem A, we can obtain Theorems 10,11,12 and 13 from
Theorems 6,7, 8 and 9, respectively.

Theorem 10 [7]. If 1/2<a<1 and
w®(3, )=0 ((log 1/3)""(log log 1/3)7~9),

then the Fourier series i A, (%) is summable |C, a| almost everywhere.
n=0
Theorem 11 [7]. If 0®(5, f)=0 ((log 1/6)"'(log log 1/5)~'*), then

the Fourier series i} A, (%) is summable |C,1/2| almost everywhere.
n=0
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Theorem 12 [7]. If 0<a<1/2 and
0®(3, /)=0 (3"~ *(log 1/5)~'(log log 1/9)7'"*),

then the Fourier series f}An(ac) is summable |C,a| almost every-
n=0

where.
Theorem 13. If 0®(5, f)=0 (6**(loglog 1/8)~'"¢), then the Fourier

series f} A, (%) is summable |[N,1/n+1| almost everywhere.
n=0

We point out that both Theorems 12 and 13 can be also deduced
from the theorem due to Lal [2, 8], who, however, stated nothing about
the facts in the cited papers, but that neither Theorem 10 nor 11 can
be induced from his theorem.

§4. Ul’yanov [7] showed that one cannot suppress the number
¢>0 in Theorems 10, 11 and 12. In this section, we shall show that
the number ¢>0 is indispensable in Theorem 13.

The following theorem is due to Tsuchikura and Okuyama [6].

Theorem B. Let {p,} be a positive non-increasing sequence such

that for an integer k, pn_k(P n Jiw):O(l) for n>k,=k=1.
n n—-k
If the series
S v (2 (Pe PaY (o, in,)”
@ 3 {3 a2 =) Gt 410D

converges, then almost all series of

“4.2) f‘_‘ +(a, cos nx+ b, sin nw)
n=1

are summable |N, p,| for almost every x, and if the series (4.1) di-
verges, then almost all series (4.2) are non-summabdle |N, p,| for almost
every x on a set of positive measure.
Using this theorem, we can prove the following theorem.
Theorem 14. There exists a function g(x) belonging to L*0,2r)
such that

4.3) 9(x) ~Z‘; ¢, COS nx,
4.4 0?1 /n, 9)=0 (n~"*(log log n)™?)

and the series (4.8) is non-summable |N,1/n+1| for almost every x on
o set of positive measure.
Proof. We put p,=1/(n+1) and
a,=1/nloglogn n=1,2,...)
where we understand a,, to be zero if the right side is negative or lose
its sense. Then there exists a function f,(x) belonging to L*(0, 2z) such
that

So@)~>. +a,cos nx.
n=1
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For this function f,(2), we have

@ 1 1/2
BR(fo= {Z';» k*(log log k)z}

1
o i)
n'/?log log n
Therefore, by a theorem of A. F. Timan and M. F. Timan (see [5], 331),
we obtain

w1 )Sé W) 20{ 1 }
¢ (n’fo =n ; P n?log logn |
On the other hand, if we put b,=0 (n=1,2, - -.), we have
DI Do N e [N SN
P Pn ) n—-k p p k k

n n-k
>A d 1 { u k*(log n)? 1 }1/2
=it nog n)? Tam (n—Ek+1)* k*(log log k)

IIV

1
n log n log logn
Hence, by Theorem B with a suitable choice of a sequence of signs,
putting

i 1 {[n/2] 1}
=1 n log nlog log n Li=1 K
=42,

Cp,==0a, (n=1,2, "')’
we can conclude the existence of the required function g(x).
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