17. Cohomology of the Symmetric Space EI

By Kiminao Ishitoya
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1977)

§ 0. Introduction. Among the compact 1-connected irreducible symmetric spaces of exceptional type, G, FI, EI, EII, EV, EVI, EVIII and EIX have 2-torsion. The cohomology of $\boldsymbol{G}, \boldsymbol{F I}$ and EII are known [2], [4], [5]. In this paper we determine the cohomology of $\boldsymbol{E I}=E_{6} / P S p(4)$.

Since $E I$ is 1-connected and $\pi_{2}(\boldsymbol{E I})=\boldsymbol{Z}_{2}$, we have two fiberings
(a) $\widetilde{\boldsymbol{E I}} \xrightarrow{g} \boldsymbol{E I} \xrightarrow{f} K\left(\boldsymbol{Z}_{2} ; 2\right)$,
(b) $\quad E_{6} \longrightarrow \widetilde{E I} \longrightarrow B S p$ (4).

On the other hand $\boldsymbol{E I V}=E_{6} / \boldsymbol{F}_{4}$, and the subgroups \boldsymbol{F}_{4} and PSp (4) of E_{6} contain the subgroup $U=S^{3} \cdot S p(3)$ in common. Noticing that $F_{4} / U=\boldsymbol{F I}$ and $P S p(4) / U=\boldsymbol{H} \boldsymbol{P}^{3}$, we have two more:
(c) $\boldsymbol{H P}^{3} \xrightarrow{i} E_{6} / U \xrightarrow{p} \boldsymbol{E I}$,
(d) $\boldsymbol{F I} \longrightarrow E_{6} / U \longrightarrow \boldsymbol{E I V}$.

We calculate the Serre spectral sequence associated to these fiberings.

Throughout the paper we use the following notations (A being a ring) :
$A\left\{x_{i}\right\}=\oplus A \cdot x_{i}$ and $\Delta\left(x_{i}\right)=A\left\{m ; m\right.$ is a simple monomial in $\left.x_{i}\right\}$.
Then our results are
Theorem 1. $H^{*}\left(\boldsymbol{E I} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[x_{i} ; i=2,3,5,9,11,13,15,17,21,23\right] / I$, where $S q^{i} x_{i+1}=x_{2 i+1}(i=1,2,4,8), S q^{j} x_{j+7}=x_{2 j+7}(j=4,8), S q^{8} x_{13}=x_{21}$ and I is the ideal generated by the following elements $\left(x_{5}^{\prime}=x_{5}+x_{2} x_{3}\right)$: $x_{2}^{3}+x_{3}^{2}, \quad x_{2}^{2} x_{i} \quad(i \neq 2,13,21), \quad x_{j}^{2} \quad(j \neq 2,3), \quad x_{5}^{\prime} x_{9} x_{17} ; \quad x_{3} x_{13}+x_{5}^{\prime} x_{11}, \quad x_{5}^{\prime} x_{13}$, $x_{9} x_{13}+x_{5}^{\prime} x_{17}, \quad x_{17} x_{13}, \quad x_{3} x_{21}+x_{9} x_{15}, \quad x_{5}^{\prime} x_{21}+x_{9} x_{17}, \quad x_{9} x_{21}, \quad x_{17} x_{21} ; \quad x_{17} x_{11}+x_{5}^{\prime} x_{23}$, $x_{5}^{\prime} x_{15}+x_{3} x_{17}+x_{9} x_{11}, \quad x_{17} x_{15}+x_{9} x_{23}, \quad x_{17} x_{23}+x_{3} x_{5}^{\prime} x_{9} x_{23} ; \quad x_{11} x_{13}, \quad x_{11} x_{15}+x_{3} x_{23}$, $x_{11} x_{21}+x_{9} x_{23}, x_{13} x_{15}+x_{5}^{\prime} x_{23}, x_{15} x_{21}, x_{k} x_{23}(k=11,13,15,21)$.

Theorem 2. (i) As a ring $H^{*}(\boldsymbol{E I}) /$ Tors. $H^{*}(\boldsymbol{E I})$ is generated by $\left\{e_{i}, e_{j}^{\prime} ; i=8,9,17 ; j=16,17,25,34\right\}$ and

$$
H^{*}\left(\boldsymbol{E I} ; Z\left[\frac{1}{2}\right]\right)=Z\left[\frac{1}{2}\right]\left[e_{8}\right] /\left(e_{8}^{3}\right) \otimes \Lambda\left(e_{9}, e_{17}\right),
$$

in which $e_{16}^{\prime}=\frac{1}{4} e_{8}^{2}, e_{17}^{\prime}=\frac{1}{2} e_{8} e_{9}, e_{25}^{\prime}=\frac{1}{2} e_{8} e_{17}$ and $e_{34}^{\prime}=\frac{1}{4} e_{8} e_{9} e_{17}$.
(ii) There exist torsion elements $\chi \in H^{3}(\boldsymbol{E I})$ of order 2 and ω_{i} $\in H^{i}(\boldsymbol{E I})(i=5,11,15,23)$ of order 4 , and

Tors. $H^{*}(\boldsymbol{E I})=\boldsymbol{Z}_{2}\left\{\chi, \chi \omega_{5}\right\} \otimes\left\{1, e_{9}, \omega_{11}, \omega_{15}, e_{17}, \omega_{23}, e_{9} \omega_{23}\right\}$

$$
\begin{aligned}
& +\boldsymbol{Z}_{2}\left\{\chi^{2}, \chi^{2} \omega_{15}, \chi^{2} \omega_{23}, \chi e_{9} \omega_{15}, \chi e_{9} e_{17} ; \omega_{5} e_{9}, \omega_{5} \omega_{11}, \omega_{5} e_{17}, e_{9} \omega_{15}, \omega_{5} e_{9} \omega_{23}\right\} \\
& +\boldsymbol{Z}_{4}\left\{\omega_{5}, \omega_{11}, \omega_{15}, \omega_{5} \omega_{15}, \omega_{23}, \omega_{5} \omega_{23}, e_{9} \omega_{23}, \omega_{15} \omega_{23}\right\} .
\end{aligned}
$$

I would like to thank Professors H. Toda and A. Kono for their many useful suggestions and encouragement.
§ 1. $\boldsymbol{H}^{*}\left(\widetilde{\boldsymbol{E I}} ; \boldsymbol{Z}_{2}\right)$. Consider the Serre spectral sequence associated to the fibering (b). The cohomology of the base and the fiber are (respectively)

$$
\begin{aligned}
& H^{*}\left(B S p(4) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[p_{1}, p_{2}, p_{3}, p_{4}\right], \operatorname{deg} p_{i}=4 i, \quad \text { and } \\
& H^{*}\left(E_{6} ; \boldsymbol{Z}_{2}\right)=\Delta\left(x_{3}, x_{5}, x_{6}, x_{9}, x_{15}, x_{17}, x_{23}\right), \operatorname{deg} x_{i}=i
\end{aligned}
$$

where $S q^{i} x_{i+1}=x_{2 i+1}(i=2,4,8), S q^{8} x_{15}=x_{23}, x_{3}^{2}=x_{6}$ and $x_{j}^{2}=0(j \neq 3)$.
Lemma 1. In this spectral sequence x_{i} are transgressive:
$\tau x_{3}=p_{1}, \tau x_{15}=p_{2}^{2}, \tau x_{23}=p_{3}^{2}$ and trivial for the rest.
Proof. It is easy to see that they are transgressive and that τx_{3} $=p_{1}, \tau x_{j}=0(j=5,6,9,17) . \quad \tau x_{15}$ and τx_{23} are obtained as follows.

Put $\tau x_{15}=a p_{4}+b p_{2}^{2}\left(a, b \in Z_{2}\right)$. Applying first $S q^{8}$ and then $S q^{4}$, we have $\tau x_{23}=a p_{2} p_{4}+b p_{3}^{2}$ and $0=\tau S q^{4} x_{23}=a p_{3} p_{4}$. Suppose $a=b=1$, then in $E_{28}^{*}, * p_{3} p_{4}=0$, which contradicts to $p_{3} p_{4}=p_{2}^{2} p_{3} \neq 0$.

Next suppose $(a, b)=(0,0)$ or $(1,0)$. Then the Poincaré series P.S. $\left(E_{\infty}^{*}, *, t\right)$ has a pole of order >1. But P.S. $\left(E_{\infty}^{*, *}, t\right)=P . S .\left(H^{*}\left(\widetilde{\boldsymbol{E I}} ; \boldsymbol{Z}_{2}\right), t\right)$ cannot have such a pole since there is a fibering $K\left(\boldsymbol{Z}_{2}, \mathbf{1}\right) \rightarrow \widetilde{\boldsymbol{E}} \rightarrow \boldsymbol{E I}$ with P.S. $\left(H^{*}\left(Z_{2} ; 1, Z_{2}\right), t\right)=1 /(1-t)$. Thus we have $a=0$ and $b=1$.

From the previous lemma
Corollary 1. $H^{*}\left(\widetilde{\boldsymbol{E} I} ; \boldsymbol{Z}_{2}\right)=\Lambda\left(x_{5}, x_{6}, x_{8}, x_{9}, x_{12}, x_{17}\right) \otimes \boldsymbol{Z}_{2}\left[x_{16}\right]$ where $S q^{1} x_{5}$ $=x_{6}, S q^{4} x_{5}=x_{9}, S q^{8} x_{9}=x_{17}, S q^{4} x_{8}=x_{12}, S q^{8} x_{12}=x_{8} x_{12}$.
§ 2. Fibering (a). According to Serre [7], $H^{*}\left(\boldsymbol{Z}_{2} ; 2, \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[u_{i} ; i=2^{m}+1, m \geqq 0\right], \quad S q^{i-1} u_{i}=u_{2 i-1}$.
Consider the spectral sequence associated to (a). We calculate d_{r} for $r \leqq 23$.

Lemma 2. (i) $x_{i}(i \neq 16)$ and $x_{20}=x_{8} x_{12}$ are transgressive:
$\tau x_{5}=u_{2}^{3}+u_{3}^{2}, \tau x_{2 i}=u_{2}^{2} u_{2 i-3}, \tau x_{2 j-1}=u_{j}^{2}(i=3,4,6,10 ; j=5,9)$
(ii) $d_{r} x_{18}=0(r<5)$ and $d_{5} x_{18}=\left(u_{5}+\varepsilon u_{2} u_{3}\right) \otimes x_{12}\left(\varepsilon \in Z_{2}\right)$.

Using these data $E_{r}^{*, *}$ is computed for $r \leqq 23$. We rewrite, for convenience, $u_{3} \otimes x_{i}$ with $v_{i+3}(i=8,12,20)$ and $u_{2}^{2} \otimes x_{j}$ with $v_{j+4}(j=9,17)$. They are permanent. Under these notations we see that up to degree $23 E_{\infty}^{*, *}$ is generated as a ring by $u_{i}(i=2,3,5,9,17)$ and $v_{j}(j=11,13$, $15,21,23$). (The structure is omitted here.) This implies that there exist indecomposables $x_{j} \in H^{j}\left(\boldsymbol{E I} ; \boldsymbol{Z}_{2}\right)(j=11,13,15,21,23)$, which together with $f^{*} u_{i}(i=2,3,5,9,17)$ generate $H^{*}\left(\boldsymbol{E I} ; \boldsymbol{Z}_{2}\right)$ up to degree 23.
§3. $\boldsymbol{H}^{*}\left(\boldsymbol{E}_{6} / \boldsymbol{S}^{3} \cdot \boldsymbol{S p}(\mathbf{3}) ; \boldsymbol{A}\right)$ for $\boldsymbol{A}=\boldsymbol{Z}$ and \boldsymbol{Z}_{2}. Now consider the fibering (d). According to [1] and [5],
$H^{*}(\boldsymbol{E I V})=\Lambda\left(z_{9}, z_{17}\right)$,
$H^{*}(\boldsymbol{F I})=\boldsymbol{Z}\left[\chi, f_{4}, f_{8}, f_{12}\right] /\left(2 \chi, f_{4} \chi, \chi^{3}, f_{4}^{3}-12 f_{4} f_{8}+8 f_{12}, f_{4} f_{12}-3 f_{8}^{2}, f_{8}^{3}-f_{12}^{2}\right)$, $H^{*}\left(\boldsymbol{F I} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[y_{2}, y_{3}, y_{8}, y_{12}\right] /\left(y_{2}^{3}+y_{3}^{2}, y_{2}^{2} y_{3}, y_{8}^{2}+y_{2}^{2} y_{12}, y_{12}^{2}+y_{2}^{2} y_{8} y_{12}\right)$, where the $\bmod 2$ reduction of χ, f_{4}, f_{8} and f_{12} are y_{3}, y_{2}^{2}, y_{8} and y_{12} respectively. Note that the base space is 8 -connected. It follows that j^{*} is surjective, and the spectral sequence collapses. Investigating the multiplicative structure we have

Proposition. $H^{*}\left(E_{6} / S^{3} \cdot S p(3) ; A\right)=H^{*}(\boldsymbol{F I} ; A) \otimes H^{*}(\boldsymbol{E I V} ; A)$,
where $A=\boldsymbol{Z}$ or \boldsymbol{Z}_{2} and in the latter case the isomorphism commutes with $S q^{i}$.

Concerning E_{6} / U and the map $i: H \boldsymbol{P}^{3} \rightarrow E_{6} / U$, we need the following. For suitable choice of generater $s \in H^{4}\left(\boldsymbol{H} \boldsymbol{P}^{3}\right)$,

Lemma 3. $i^{*} f_{4 j}=4 s^{j}(j=1,3)$ and $i^{*} f_{8}=2 s^{2}$.
Corollary 2. $H^{*}\left(\boldsymbol{E I} ; Z\left[\frac{1}{2}\right]\right)=Z\left[\frac{1}{2}\right]\left[e_{8}\right] /\left(e_{8}^{3}\right) \otimes \Lambda\left(\boldsymbol{z}_{9}, z_{17}\right)$,
where $p^{*} e_{8}=f_{4}^{2}-8 f_{8}, p^{*} z_{9}=z_{9}$ and $p^{*} z_{17}=z_{17} \bmod$ decomposables.
§4. Proof of Theorem 1. In the spectral sequence associated to (c)

$$
E_{2}^{*, *}=H^{*}(\boldsymbol{E I} ; A) \otimes H^{*}\left(\boldsymbol{H} \boldsymbol{P}^{3} ; A\right)=\sum_{0 \leqq i<4} H^{*}(\boldsymbol{E I} ; A) \otimes s^{i}
$$

In the sequel to the end we use the following abbreviations;

$$
H^{n}=H^{n}(E I ; A) \quad \text { and } \quad E_{r}^{n}=\sum_{p+q=n} E_{r}^{p, q} .
$$

(The coefficient ring A will often be omitted.)
Lemma 4. (i) There exist unique elements $x_{i} \in H^{i} \quad(i=11,13)$ such that $p^{*} x_{11}=y_{3} y_{8}, S q^{1} x_{11}=x_{3} x_{9}$ and $p^{*} x_{13}=y_{2}^{2} z_{9}$.
(ii) Define $x_{15}=S q^{4} x_{11}, x_{23}=S q^{8} x_{15}$ and $x_{21}=S q^{8} x_{13}$. Then they are indecomposable, and hence generate H^{*} together with $x_{i}(i=2,3,5,9,17)$ up to degree 23.

Proof. Since $\operatorname{Ker} p^{*} \cap H^{5}=Z_{2}\left\{x_{5}+x_{2} x_{3}\right\}$, we have $\tau s=x_{5}+x_{2} x_{3}$, and applying $S q^{4}, \tau\left(s^{2}\right)=x_{9}$. Then it follows that $E_{\infty}^{8}=\boldsymbol{Z}_{2}\left\{x_{3} x_{5}\right\}+\boldsymbol{Z}_{2}\left\{x_{2}^{2}\right\}$ $\otimes s$ and $E_{\infty}^{9}=Z_{2}\left\{x_{5}+x_{2} x_{3}\right\} \otimes s$. Since $p^{*}\left(x_{3} x_{5}\right)=y_{2}^{4}, y_{8}$ represents $x_{2}^{2} \otimes s$ $\in E_{\infty}^{4,4}$ while y_{3} does $x_{3} \otimes 1$. But $\left(x_{3} \otimes 1\right)\left(x_{2}^{2} \otimes s\right)=x_{2}^{2} x_{3} \otimes s=0$, which implies that $y_{3} y_{8}$ is of lower filtration degree. Consequently $y_{3} y_{8}$ is a p^{*} image. Likewise we see that $y_{2}^{2} z_{9}$ is also a p^{*}-image. Then the rest of the assertion follows easily.

Next note that $\operatorname{dim} \boldsymbol{E I}=42$ and that the bilinear form $H^{n} \times H^{42-n}$ $\rightarrow H^{42}=Z_{2}$ induced by cup-product is non-degenerate. Using it we obtain the fundamental class $\in H^{42}$, and then additive bases for H^{n} for all n. More precisely

Lemma 5. Let $N=\{3,5,9,17\}$ and $N^{\prime}=\{5,9,17\}$, then we have $H^{*}\left(\boldsymbol{E I} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[x_{2}, x_{3}, x_{5}, x_{9}, x_{17}\right] /\left(x_{2}^{3}+x_{3}^{2}, x_{2}^{2} x_{i}, x_{j}^{2},\left(x_{2} x_{3}+x_{5}\right) x_{9} x_{17} ;\right.$ $\left.i \in N, j \in N^{\prime}\right)$
$+\left(\Lambda\left(x_{2}, x_{3}, x_{5}\right)+\Lambda\left(x_{2}, x_{3}\right) \cdot x_{9}\right) \otimes x_{11}+\Lambda\left(x_{2}, x_{3}, x_{9}\right) \otimes x_{15}$
$+\Lambda\left(x_{2}, x_{3}, x_{5}, x_{9}\right) \otimes x_{23}+\boldsymbol{Z}_{2}\left\{1, x_{2}, x_{2}^{2}\right\} \otimes \boldsymbol{Z}_{2}\left\{x_{13}, x_{21}, x_{13} x_{21}\right\}$.

By use of the $S q^{i}$ and the Adem relations we obtain all the relations necessary to rewrite monomials which cannot appear in the previous lemma (e.g. $x_{i} x_{k}$ ($i \in N$ and $k=13,21$), $x_{11} x_{13}, x_{11} x_{15}$, etc.) and Theorem 1 is obtained.
§5. Proof of Theorem 2. Consider the spectral sequence associated to (c) with integral coefficients. It is readily seen that H^{*} (${ }^{\leqq} \leqq 7$) is generated by $\chi \in H^{3}$ of order 2 and $\omega_{5}=\tau s \in H^{5}$ of order 4 and that $p^{*} \chi=\chi, p^{*} \omega_{5}=0$ and $\chi \omega_{5} \neq 0$. By Lemma 3, $f_{4}^{2}-8 f_{8} \in \operatorname{Ker} i^{*}$ and it represents an element in $E_{\infty}^{8-q, q}$ for some $q<8$, which is trivial if $q>0$. Consequently $f_{4}^{2}-8 f_{8}=p^{*} e_{8}$ for some $e_{8} \in H^{8}$. We choose e_{8} such that $e_{8} \equiv x_{2}^{4}(\bmod 2)$.

Next by Corollary 2 and Theorem 1, $H^{9}=\boldsymbol{Z}\left\{e_{9}\right\}$ and $E_{2}^{9}=\boldsymbol{Z}\left\{e_{9}\right\}$ $+Z_{4}\left\{\omega_{5}\right\} \otimes s$. On the other hand $H^{9}\left(E_{6} / U\right)=Z\left\{z_{9}\right\}$ and $z_{9} \bmod 2$ is not a p^{*}-image. Note that $d_{5}\left(s^{2}\right)=2 \omega_{5} \otimes s$, and we have $E_{\infty}^{9}=\boldsymbol{Z}\left\{e_{9}\right\}+Z_{2}\left\{\omega_{5}\right\} \otimes s$, whence $p^{*} e_{9}= \pm 2 z_{9}$. Looking into the filtration on $H^{*}\left(E_{6} / U\right), e_{17}$ is similarly defined, and $p^{*} e_{17} \equiv 2 z_{17} \bmod$ decomposables.

Since $e_{8}^{2} \equiv x_{2}^{8}=0 \bmod 2, e_{8}^{2}$ is divisible by 2. Calculation in $H^{*}\left(E_{6} / U\right)$ shows that there is an element e_{16}^{\prime} such that $e_{8}^{2}=4 e_{16}^{\prime}$, and $H^{16}=Z\left\{e_{16}^{\prime}\right\}$. For the similar reason we must introduce three more: $e_{17}^{\prime}=\frac{1}{2} e_{8} e_{9}$, $e_{25}^{\prime}=\frac{1}{2} e_{8} e_{17}$ and $e_{34}^{\prime}=\frac{1}{4} e_{8} e_{9} e_{17}$.

At last for Tors. $H^{*}(\boldsymbol{E I})$. In E_{r}^{*} we see that $\chi^{2} \otimes s$ is not a cocycle since $H^{10}=0$, from which $\chi^{2} \omega_{5}=d_{5}\left(\chi^{2} \otimes s\right) \neq 0$. But $\chi^{2} \omega_{5} \equiv x_{3}^{2} x_{5} \bmod 2$, which vanishes. So we have another higher torsion ω_{11} such that $2 \omega_{11}=\chi^{2} \omega_{5}$. By similar argument we have two more: ω_{15} and ω_{23}. It is seen that for $i=5,11,15$ and 23

$$
\omega_{i} \bmod 2=x_{i}+x_{2} x_{i-2} \equiv \beta^{\prime} x_{2} x_{3} x_{i-6} \bmod \operatorname{Im} \beta \quad(i \neq 5),
$$

where $\beta=\frac{1}{2} \delta$ and $\beta^{\prime}=\frac{1}{4} \delta$ are Bockstein operations. Using the derivativity of β and β^{\prime} and comparing with the $\bmod 2$ cohomology, we obtain the structure of Tors. $H^{*}(\boldsymbol{E I})$. From the procedure Theorem 2 follows.

References

[1] S. Araki: Cohomology modulo 2 of the compact exceptional groups E_{6} and E_{7}. J. Math. Osaka City Univ., 12, 43-65 (1961).
[2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces. Amer. J. Math., 80, 458-538 (1958).
[3] E. Cartan: Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple. Ann. Sci. Ecole Norm. Sup., 44, 345-467 (1927).
[4] K. Ishitoya: Integral cohomology ring of the symmetric space EII (to
appear in J. Math. Kyoto Univ.).
[5] K. Ishitoya and H. Toda: On the cohomology of irreducible symmetric spaces of exceptional type (to appear).
[6] J.-P. Serre: Homologie singulière des espaces fibrés. Ann. of Math., 54, 425-505 (1951).
[7] -: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv., 27, 198-232 (1953).

